簡(jiǎn)介:字?jǐn)?shù)英文字?jǐn)?shù)英文23222322單詞,單詞,1306013060字符;中文字符;中文39583958漢字漢字出處出處JACEKJACEKOSKARBSKIAUTOMATICOSKARBSKIAUTOMATICROADROADTRAFFICTRAFFICSAFETYSAFETYMANAGEMENTMANAGEMENTSYSTEMSYSTEMININURBANURBANAREASJMATECAREASJMATECWEBWEBOFOFCONFERENCES2017,1220300716CONFERENCES2017,1220300716外文文獻(xiàn)外文文獻(xiàn)AUTOMATICROADTRAFFICSAFETYMANAGEMENTSYSTEMINURBANAREASABSTRACTTRAFFICINCIDENTSANDACCIDENTSCONTRIBUTETODECREASINGLEVELSOFTRANSPORTSYSTEMRELIABILITYANDSAFETYTRAFFICMANAGEMENTANDEMERGENCYSYSTEMSONTHEROAD,USING,AMONGOTHERS,AUTOMATICDETECTION,VIDEOSURVEILLANCE,COMMUNICATIONTECHNOLOGIESANDINSTITUTIONALSOLUTIONSIMPROVETHEORGANIZATIONOFTHEWORKOFVARIOUSDEPARTMENTSINVOLVEDINTRAFFICANDSAFETYMANAGEMENTAUTOMATIONOFINCIDENTMANAGEMENTHELPSTOREDUCETHETIMEOFARESCUEOPERATIONASWELLASOFTHENORMALIZATIONOFTHEFLOWOFTRAFFICAFTERCOMPLETIONOFARESCUEOPERATION,WHICHALSOAFFECTSTHEREDUCTIONOFTHERISKOFSECONDARYACCIDENTSANDCONTRIBUTESTOREDUCINGTHEIRSEVERITYTHEPAPERPRESENTSTHEPOSSIBILITYOFINCLUDINGCITYTRAFFICDEPARTMENTSINTHEPROCESSOFINCIDENTMANAGEMENTTHERESULTSOFRESEARCHONTHEAUTOMATICINCIDENTDETECTIONINCITIESAREALSOPRESENTED1INTRODUCTIONTRANSPORTSYSTEMSAREAKEYELEMENTINMEETINGBASICSOCIALNEEDSRELATEDTOPOPULATIONMOBILITYANDSUPPLIESTHEYFACILITATETHEDEVELOPMENTOFECONOMICACTIVITYANDCONTRIBUTETOUPGRADINGTHEQUALITYOFLIFESOCIETYEXPECTSAHIGHLEVELOFRELIABILITYOFTRANSPORTWHILETRAVELINGTOWORK,SCHOOLSANDFORRECREATIONTODAY,SYSTEM,WECANIDENTIFYMANYINTERRELATEDANDMUTUALLYINTERACTINGELEMENTSSTRUCTURESOFORGANIZATIONOFTRAFFICSAFETYMANAGEMENTSERVICES,ASWELLASLEGALBASESANDPROCEDURESTHATDETERMINETHEORGANIZATION,COMPETENCESANDCOLLABORATIONOFSUCHSERVICES,TOOLSINFLUENCINGTHEIMPROVEMENTOFTRAFFICSAFETYMANAGEMENTATTHESTRATEGICLEVELEGREGIONAL,LOCALANDSECTORALPROGRAMSOFTRAFFICSAFETYMANAGEMENT,INCLUDINGMONITORINGOFTHEIRIMPLEMENTATIONANDTHEOPERATIONALLEVELCURRENTMONITORINGANDSUPERVISION,BROADERSUPPORTTOOLSFORSYSTEMMANAGEMENTEGDATABASES,INFORMATIONSYSTEMS,EXPERTSYSTEMS,GUIDELINESANDEXAMPLESOFGOODPRACTICE,ITSSERVICESBASEDONSCIENTIFICRESEARCH,MANAGEMENTMETHODSFORTHEWHOLESYSTEMANDITSSELECTEDELEMENTSINCLUDINGRISKMANAGEMENTTHENATIONALROADSAFETYPROGRAMFOR20132020INDICATEDTHATTHEPROCESSOFIMPROVINGTRAFFICSAFETYREQUIRESTHEUSEOFUPTOTHREECONSECUTIVEANDINTERLINKEDCOMPONENTSINSTITUTIONALMANAGEMENTFUNCTIONS,SPECIFICACTIONSINTERVENTIONSANDOUTCOMESBASICFUNCTIONSOFINSTITUTIONALMANAGEMENTINCLUDEDCOORDINATION,LEGISLATION,FINANCINGANDPROVISIONOFRESOURCES,PROMOTIONANDCOMMUNICATION,MONITORINGANDEVALUATION,ASWELLASRESEARCH,DEVELOPMENTANDKNOWLEDGETRANSFERTHEDIAGNOSISOFTHEEXISTINGSYSTEMOFSAFETYMANAGEMENTCARRIEDOUTINTHEFRAMEWORKOFTHENATIONALROADSAFETYPROGRAMHASSHOWNTHATEACHOFTHESEFUNCTIONSNEEDSTOBEIMPROVEDINTERMSOFIMPLEMENTATIONOFMEASURESINCLUDEDINTHEPROGRAMTHESEFUNCTIONSAREPERFORMEDINDIFFERENTPROPORTIONSDEPENDINGONTHEPARTICULARINSTITUTIONANDTHELEVELOFPUBLICADMINISTRATIONTHEYHIGHLIGHTEDTHENEEDTOIMPROVEORGANIZATIONALSTRUCTURESOFTRAFFICSAFETYANDCOORDINATIONWITHTHENATIONALROADSAFETYCOUNCILASALEADINGINSTITUTION,ASWELLASWITHREGIONALROADSAFETYCOUNCILSASTHEREALLEADERSOFTHEREGION–WITHTHESUPPORTOFRESEARCH
下載積分: 10 賞幣
上傳時(shí)間:2024-03-15
頁(yè)數(shù): 13
大?。?0.03(MB)
子文件數(shù):
簡(jiǎn)介:APPLIEDSOFTCOMPUTING122012453–461CONTENTSLISTSAVAILABLEATSCIVERSESCIENCEDIRECTAPPLIEDSOFTCOMPUTINGJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/ASOCANOVELMETHODFORAUTOMATICMODULATIONRECOGNITIONATAOLLAHEBRAHIMZADESHERMEFACULTYOFELECTRICALANDCOMPUTERENGINEERING,BABOLUNIVERSITYOFTECHNOLOGY,BABOL,IRANARTICLEINFOARTICLEHISTORYRECEIVED15SEPTEMBER2009RECEIVEDINREVISEDFORM23DECEMBER2010ACCEPTED14AUGUST2011AVAILABLEONLINE30AUGUST2011KEYWORDSMODULATIONRECOGNITIONPATTERNRECOGNITIONBEESALGORITHMHIERARCHICALSUPPORTVECTORMACHINEBASEDCLASSIFIERCOMBINATIONOFTHEHIGHERORDERMOMENTSUPTOEIGHTHANDHIGHERORDERCUMULANTSUPTOEIGHTHSPECTRALCHARACTERISTICSABSTRACTAUTOMATICRECOGNITIONOFTHEDIGITALMODULATIONPLAYSANIMPORTANTROLEINVARIOUSAPPLICATIONSTHISPAPERINVESTIGATESTHEDESIGNOFANACCURATESYSTEMFORRECOGNITIONOFDIGITALMODULATIONSFIRST,ITISINTRODUCEDANEFFICIENTPATTERNRECOGNITIONSYSTEMTHATINCLUDESTWOMAINMODULESTHEFEATUREEXTRACTIONMODULEANDTHECLASSIFIERMODULEFEATUREEXTRACTIONMODULEEXTRACTSASUITABLECOMBINATIONOFTHEHIGHERORDERMOMENTSUPTOEIGHTH,HIGHERORDERCUMULANTSUPTOEIGHTHANDINSTANTANEOUSCHARACTERISTICSOFDIGITALMODULATIONSTHESECOMBINATIONSOFTHEFEATURESAREAPPLIEDFORTHEFIRSTTIMEINTHISAREAINTHECLASSIFIERMODULE,TWOIMPORTANTCLASSESOFSUPERVISEDCLASSIFIERS,IE,MULTILAYERPERCEPTRONMLPNEURALNETWORKANDHIERARCHICALMULTICLASSSUPPORTVECTORMACHINEBASEDCLASSIFIERAREINVESTIGATEDBYEXPERIMENTALSTUDY,WECHOOSETHEBESTCLASSIFIERFORRECOGNITIONOFTHECONSIDEREDMODULATIONSTHEN,WEPROPOSEAHYBRIDHEURISTICRECOGNITIONSYSTEMTHATANOPTIMIZATIONMODULEISADDEDTOIMPROVETHEGENERALIZATIONPERFORMANCEOFTHECLASSIFIERINTHISMODULEWEHAVEUSEDANEWOPTIMIZATIONALGORITHMCALLEDBEESALGORITHMTHISMODULEOPTIMIZESTHECLASSIFIERDESIGNBYSEARCHINGFORTHEBESTVALUEOFTHEPARAMETERSTHATTUNEITSDISCRIMINANTFUNCTION,ANDUPSTREAMBYLOOKINGFORTHEBESTSUBSETOFFEATURESTHATFEEDTHECLASSIFIERSIMULATIONRESULTSSHOWTHATTHEPROPOSEDHYBRIDINTELLIGENTTECHNIQUEHASVERYHIGHRECOGNITIONACCURACYEVENATLOWLEVELSOFSNRWITHALITTLENUMBEROFTHEFEATURES?2011ELSEVIERBVALLRIGHTSRESERVED1INTRODUCTIONAUTOMATICMODULATIONRECOGNITIONISATECHNIQUETHATRECOGNIZESTHETYPEOFTHERECEIVEDSIGNALATTHERECEIVERITPLAYSANIMPORTANTROLEINMILITARYANDCIVILDOMAINSFOREXAMPLE,INMILITARYAPPLICATIONS,ITCANBEEMPLOYEDFORELECTRONICSURVEILLANCE,INTERFERENCERECOGNITIONANDMONITORINGTHEWIDERANGEOFCIVILIANAPPLICATIONSINCLUDESSPECTRUMMANAGEMENT,NETWORKTRAFFICADMINISTRATION,SIGNALCONFIRMATION,SOFTWARERADIOS,INTELLIGENTMODEMS,COGNITIVERADIO,ETCDUETOTHEINCREASINGUSAGEOFDIGITALSIGNALSINNOVELTECHNOLOGIESSUCHASSOFTWARERADIO,THERECENTRESEARCHESHAVEBEENFOCUSEDONIDENTIFYINGTHESESIGNALTYPESGENERALLY,DIGITALSIGNALTYPEIDENTIFICATIONMETHODSFALLINTOTWOMAINCATEGORIESDECISIONTHEORETICDTMETHODSANDPATTERNRECOGNITIONPRMETHODSDTMETHODSUSEPROBABILISTICANDHYPOTHESISTESTINGARGUMENTSTOFORMULATETHERECOGNITIONPROBLEM1–3THEMAJORDRAWBACKSOFDTMETHODSARETHEIRTOOHIGHCOMPUTATIONALCOMPLEXITY,LACKOFROBUSTNESSTOTHEMODELMISMATCHASWELLASCAREFULANALYSISTHATAREREQUIREDTOSETTHECORRECTTHRESHOLDVALUES4PRMETHODS,HOWEVER,DONOTNEEDSUCHCAREFULTREATMENTTHEYAREEASYTOIMPLEMENTPRMETHODSCANBEFURTHERDIVIDEDINTWOMAINSUBSYSTEMSTHEFEATUREEXTRACTIONSUBSYSTEMEMAILADDRESSABRAHAMZADEHGMAILCOMANDTHECLASSIFIERSUBSYSTEMTHEFORMEREXTRACTSTHEFEATURESEGHISTOGRAMS,SPECTRALCHARACTERISTICS,INSTANTANEOUSCHARACTERISTICS,COMBINATIONOFSECONDANDFOURTHORDERMOMENT,SYMMETRY,ETC,ANDTHELATTERDETERMINESTHEMEMBERSHIPOFSIGNALEGNEURALNETWORKS,KNEARESTNEIGHBOR,FUZZYLOGICCLASSIFIER,ETC4–19FROMTHEPUBLISHEDWORKS,ITAPPEARSCLEARTHATINTHEDESIGNOFASYSTEMFORAUTOMATICRECOGNITIONOFDIGITALSIGNALTYPEMODULATION,THEREARESOMEIMPORTANTISSUES,WHICH,IFSUITABLYADDRESSED,LEADTOTHEDEVELOPMENTOFMOREROBUSTANDEFFICIENTRECOGNIZERSONEOFTHESEISSUESISRELATEDTOTHECHOICEOFTHECLASSIFICATIONAPPROACHTOBEADOPTEDLITERATUREREVIEWSHOWSTHATDESPITEITSGREATPOTENTIAL,THEAPPLICATIONOFDIFFERENTSUPERVISEDCLASSIFIERHASNOTRECEIVEDTHEATTENTIONITDESERVESINTHEMODULATIONCLASSIFICATIONTHEREFORE,INTHISPAPERWEINVESTIGATEDTHEPERFORMANCESOFMULTILAYERPERCEPTRONNEURALNETWORKMLP20,ANDSUPPORTVECTORMACHINESVM21,22INTHISPAPER,WEHAVEUSEDTHESVMSINTHESTRUCTUREOFTHEPROPOSEDHIERARCHICALCLASSIFIERCHOOSINGTHERIGHTFEATURESETISSTILLANOTHERISSUEINTHISPAPER,ASUITABLESETOFTHEINSTANTANEOUSCHARACTERISTICS,THEHIGHERORDERMOMENTSUPTOEIGHTHANDTHEHIGHERORDERCUMULANTSUPTOEIGHTHAREPROPOSEDASTHEEFFECTIVEFEATURESTURNINGBACKTOTHEDIGITALSIGNALRECOGNITIONSYSTEMS,ITISFOUNDTHAT1FEATURESELECTIONISNOTPERFORMEDINACOMPLETELYAUTOMATICWAYAND2THESELECTIONOFTHEBESTFREEPARAMETERSOFTHEADOPTEDCLASSIFIERAREGENERALLYDONEEMPIRICALLYMODELSELECTIONISSUEANOTHERISSUETHATISADDRESSEDINTHISPAPERISOPTIMIZATIONINTHISMODULEWEHAVEUSEDANEW15684946/–SEEFRONTMATTER?2011ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JASOC201108025AESHERME/APPLIEDSOFTCOMPUTING122012453–461455WHEREMISTHEMEANOFTHERANDOMVARIABLETHEDEFINITIONFORTHEITHMOMENTFORAFINITELENGTHDISCRETESIGNALISGIVENBY?IN?K1SK?MIFSK7WHERENISTHEDATALENGTHINTHISSTUDYSIGNALSAREASSUMEDTOBEZEROMEANTHUS?IN?K1SIKFSK8NEXT,THEAUTOMOMENTOFTHERANDOMVARIABLEMAYBEDEFINEDASFOLLOWSMPQESP?QS?Q9WHEREPISCALLEDTHEMOMENTORDERANDSSTANDSFORCOMPLEXCONJUGATIONOFSASSUMEAZEROMEANDISCRETEBASEDBANDSIGNALSEQUENCEOFTHEFORMSKAKJBKUSINGTHEDEFINITIONOFTHEAUTOMOMENTS,THEEXPRESSIONSFORDIFFERENTORDERSMAYBEEASILYDERIVEDFOREXAMPLEM83ES5S?3EAJB5A?JB3?M83EA5J5A4BJ210A3B2J310A2B3J45AB4J5B5A3?J3A2BJ23AB2?J3B3?M83EA8J2A7B?J22A6B2?J36A5B3J560A3B5J62A2B6?J72AB7?J8B8?M83EA82A6B2?2A2B6?B810CONSIDERASCALARZEROMEANRANDOMVARIABLESWITHCHARACTERISTICFUNCTION?FTE{EJTS}11EXPANDINGTHELOGARITHMOFTHECHARACTERISTICFUNCTIONASATAYLORSERIES,ONEOBTAINSLOG?FTK1JTKRJTRR12THECONSTANTSKRIN12ARECALLEDTHECUMULANTSOFTHEDISTRIBUTIONOFSTHESYMBOLISMFORPTHORDEROFCUMULANTISSIMILARTOTHATOFTHEPTHORDERMOMENTMORESPECIALLYCPQCUMS,,S????P?QTERMS,S?,,S?????QTERMS13FOREXAMPLEC81CUMS,S,S,S,S,S,S,S?14THENTHORDERCUMULANTISAFUNCTIONOFTHEMOMENTSOFORDERSUPTOANDINCLUDINGNMOMENTSMAYBEEXPRESSEDINTERMSOFCUMULANTSASMS1,,SN??VCUM{SJ}J∈V1CUM{SJ}J∈VQ15WHERETHESUMMATIONINDEXISOVERALLPARTITIONSVV1,,VQFORTHESETOFINDEXES1,2,,N,ANDQISTHENUMBEROFELEMENTSINAGIVENPARTITIONCUMULANTSMAYBEALSOBEDERIVEDINTERMSOFMOMENTSCUMS1,,SN??V?1Q?1Q?1E???J∈V1SJ??E???J∈VQSJ??16WHERETHESUMMATIONISBEINGPERFORMEDONALLPARTITIONSVV1,,VQFORTHESETOFINDICES1,2,,NWEHAVECOMPUTEDALLOFTHEHIGHERORDERFEATURESFORTHEDIGITALCOMMUNICATIONSIGNALSTHATARECONSIDEREDTABLE1SHOWSTHESOMEOFTHETHEORETICALVALUESOFTHEHIGHERORDERSTATISTICSFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPESTHESEVALUESARECOMPUTEDTABLE1SOMEOFTHEHIGHERORDERFEATURESFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPESPSK2QAM16QAM64M41100M611?132?13M84131339C61162081797C80?244?1399?115C84?24417380UNDERTHECONSTRAINTOFUNITVARIANCEINNOISEFREEANDNORMALIZEDBYTHEORETICALSIGNALPOWER,IE,THESEVALUESAREOBTAINEDASSUMINGTHESIGNALISCLEANANDOFINFINITELENGTHHOWEVER,INPRACTICESIGNALSAREUSUALLYSUBJECTTOSOMETYPEOFDISTORTION,EITHERINSIDETHETRANSMITTERORDURINGTRANSMISSION,ANDAREOFFINITELENGTHFIG1SHOWSONEOFTHEHIGHERORDERFEATURESFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPES3CLASSIFIERINTHISPAPER,TWOIMPORTANTSUPERVISEDCLASSIFIERSHAVEUSEDFOLLOWINGPHRASESDESCRIBESBRIEFLYTHESECLASSIFIERS31MLPNEURALNETWORKANMLPNEURALNETWORKCONSISTSOFANINPUTLAYEROFSOURCENODES,ONEORMOREHIDDENLAYERSOFCOMPUTATIONNODESANDANOUTPUTLAYER21THEISSUEOFLEARNINGALGORITHMANDITSSPEEDISVERYIMPORTANTFORMLPONEOFTHEMOSTPOPULARLEARNINGALGORITHMSISBACKPROPAGATIONBPALGORITHMHOWEVERUNDERCERTAINCONDITIONS,THEBPNETWORKCLASSIFIERCANPRODUCENONROBUSTCLASSIFICATIONRESULTSANDEASILYCONVERGETOALOCALMINIMUMMOREOVERITISTIMECONSUMINGINTRAININGPHASEINRECENTYEARS,NEWLEARNINGALGORITHMSHAVEBEENPROPOSEDFORNEURALNETWORKTRAININGINTHISPAPER,THERESILIENTBACKPROPAGATIONRPROPALGORITHMISUSEDASTHELEARNINGALGORITHMOFTHEMLPNEURALNETWORK26RPROPCONSIDERSTHESIGNOFDERIVATIVESASTHEINDICATIONFORTHEDIRECTIONOFTHEWEIGHTUPDATEINDOINGSO,THESIZEOFTHEPARTIALDERIVATIVEDOESNOTINFLUENCETHEWEIGHTSTEPTHEFOLLOWINGEQUATIONSHOWSTHEADAPTATIONOFTHEUPDATEVALUESOF?IJWEIGHTCHANGESFORTHERPROPALGORITHMFORINITIALIZATION,ALL?IJARESETTOSMALLPOSITIVEVALUES?IJT??????????IJT?1IFIEIWIJT?1IEIWIJT?0????IJT?1IFIEIWIJT?1IEIWIJT?0?0??IJT?1OTHERWISE17WHERE?01,0????1??,??,0,AREKNOWNASTHEUPDATEFACTORS,WIJREPRESENTSTHEWEIGHTVALUEFROMNEURONJTONEURONI,ANDEREPRESENTSTHEERRORFUNCTIONWHENEVERTHEDERIVATIVEOFTHECORRESPONDINGWEIGHTCHANGESITSSIGN,ITIMPLIESTHATTHEPREVIOUSUPDATEVALUEISTOOLARGEANDITHASSKIPPEDAMINIMUMTHEREFORE,THEUPDATEVALUEISTHENREDUCED??ASSHOWNABOVEHOWEVER,IFTHEDERIVATIVERETAINSITSSIGN,THEUPDATEVALUEIS?INCREASEDTHISWILLHELPTOACCELERATECONVERGENCEINSHALLOWAREASTOAVOIDOVERACCELERATION,INTHEEPOCHFOLLOWINGTHEAPPLICATIONOF?,THENEWUPDATEVALUEISNEITHERINCREASEDNORDECREASED?0FROMTHEPREVIOUSONENOTETHATVALUESOF?IJREMAINNONNEGATIVEINEVERYEPOCHTHISUPDATEVALUEADAPTATIONPROCESSISTHENFOLLOWEDBYTHE
下載積分: 10 賞幣
上傳時(shí)間:2024-03-13
頁(yè)數(shù): 9
大?。?0.56(MB)
子文件數(shù):