眾賞文庫(kù)
全部分類
  • 抗擊疫情 >
    抗擊疫情
    病毒認(rèn)知 防護(hù)手冊(cè) 復(fù)工復(fù)產(chǎn) 應(yīng)急預(yù)案 防控方案 英雄事跡 院務(wù)工作
  • 成品畢設(shè) >
    成品畢設(shè)
    外文翻譯 畢業(yè)設(shè)計(jì) 畢業(yè)論文 開(kāi)題報(bào)告 文獻(xiàn)綜述 任務(wù)書(shū) 課程設(shè)計(jì) 相關(guān)資料 大學(xué)生活 期刊論文 實(shí)習(xí)報(bào)告
  • 項(xiàng)目策劃 >
    項(xiàng)目策劃
    土地準(zhǔn)備 規(guī)劃設(shè)計(jì) 開(kāi)工開(kāi)盤 項(xiàng)目綜合 竣工移交 售后移交 智慧方案 安全專項(xiàng) 環(huán)境影響評(píng)估報(bào)告 可行性研究報(bào)告 項(xiàng)目建議書(shū) 商業(yè)計(jì)劃書(shū) 危害評(píng)估防治 招投標(biāo)文件
  • 專業(yè)資料 >
    專業(yè)資料
    人文法律 環(huán)境安全 食品科學(xué) 基礎(chǔ)建設(shè) 能源化工 農(nóng)林牧畜 綜合待分類 教育經(jīng)驗(yàn) 行政人力 企業(yè)管理 醫(yī)學(xué)衛(wèi)生 IT技術(shù) 土木建筑 考研專題 財(cái)會(huì)稅務(wù) 公路隧道 紡織服裝
  • 共享辦公 >
    共享辦公
    總結(jié)匯報(bào) 調(diào)研報(bào)告 工作計(jì)劃 述職報(bào)告 講話發(fā)言 心得體會(huì) 思想?yún)R報(bào) 事務(wù)文書(shū) 合同協(xié)議 活動(dòng)策劃 代理加盟 技術(shù)服務(wù) 求職簡(jiǎn)歷 辦公軟件 ppt模板 表格模板 融資協(xié)議 發(fā)言演講 黨團(tuán)工作 民主生活
  • 學(xué)術(shù)文檔 >
    學(xué)術(shù)文檔
    自然科學(xué) 生物科學(xué) 天文科學(xué) 醫(yī)學(xué)衛(wèi)生 工業(yè)技術(shù) 航空、航天 環(huán)境科學(xué)、安全科學(xué) 軍事 政學(xué) 文化、科學(xué)、教育、 交通運(yùn)輸 經(jīng)濟(jì) 語(yǔ)言、文字 文學(xué) 農(nóng)業(yè)科學(xué) 社會(huì)科學(xué)總論 藝術(shù) 歷史、地理 哲學(xué) 數(shù)理科學(xué)和化學(xué) 綜合性圖書(shū) 哲學(xué)宗教
  • 經(jīng)營(yíng)營(yíng)銷 >
    經(jīng)營(yíng)營(yíng)銷
    綜合文檔 經(jīng)濟(jì)財(cái)稅 人力資源 運(yùn)營(yíng)管理 企業(yè)管理 內(nèi)控風(fēng)控 地產(chǎn)策劃
  • 教學(xué)課件 >
    教學(xué)課件
    幼兒教育 小學(xué)教育 初中教育 高中教育 職業(yè)教育 成人教育 高等教育 考研資源 試題真題 作業(yè)習(xí)題 課后答案 綜合教學(xué)
  • 土木建筑 >
    土木建筑
    專項(xiàng)施工 應(yīng)急預(yù)案 建筑規(guī)范 工藝方案 技術(shù)交底 施工表格 圖片圖集
  • 課程導(dǎo)學(xué) >
    課程導(dǎo)學(xué)
    醫(yī)學(xué)綜合 中醫(yī)養(yǎng)生 醫(yī)學(xué)研究 身心發(fā)展 醫(yī)學(xué)試題 影像醫(yī)學(xué) 醫(yī)院辦公 外科醫(yī)學(xué) 老年醫(yī)學(xué) 內(nèi)科醫(yī)學(xué) 婦產(chǎn)科 神經(jīng)科 醫(yī)學(xué)課件 眼鼻喉科 皮膚病科 腫瘤科 兒科醫(yī)學(xué) 康復(fù)醫(yī)學(xué) 全科醫(yī)學(xué) 護(hù)理學(xué)科 針灸學(xué)科 重癥學(xué)科 病毒學(xué)科 獸醫(yī) 藥學(xué)
    • 下載積分: 13 賞幣
      上傳時(shí)間:2024-01-07
      大?。?0.56(MB)
      子文件數(shù):
      12人已閱讀
      ( 4 星級(jí))
    • 簡(jiǎn)介:字?jǐn)?shù)英文字?jǐn)?shù)英文23222322單詞,單詞,1306013060字符;中文字符;中文39583958漢字漢字出處出處JACEKJACEKOSKARBSKIAUTOMATICOSKARBSKIAUTOMATICROADROADTRAFFICTRAFFICSAFETYSAFETYMANAGEMENTMANAGEMENTSYSTEMSYSTEMININURBANURBANAREASJMATECAREASJMATECWEBWEBOFOFCONFERENCES2017,1220300716CONFERENCES2017,1220300716外文文獻(xiàn)外文文獻(xiàn)AUTOMATICROADTRAFFICSAFETYMANAGEMENTSYSTEMINURBANAREASABSTRACTTRAFFICINCIDENTSANDACCIDENTSCONTRIBUTETODECREASINGLEVELSOFTRANSPORTSYSTEMRELIABILITYANDSAFETYTRAFFICMANAGEMENTANDEMERGENCYSYSTEMSONTHEROAD,USING,AMONGOTHERS,AUTOMATICDETECTION,VIDEOSURVEILLANCE,COMMUNICATIONTECHNOLOGIESANDINSTITUTIONALSOLUTIONSIMPROVETHEORGANIZATIONOFTHEWORKOFVARIOUSDEPARTMENTSINVOLVEDINTRAFFICANDSAFETYMANAGEMENTAUTOMATIONOFINCIDENTMANAGEMENTHELPSTOREDUCETHETIMEOFARESCUEOPERATIONASWELLASOFTHENORMALIZATIONOFTHEFLOWOFTRAFFICAFTERCOMPLETIONOFARESCUEOPERATION,WHICHALSOAFFECTSTHEREDUCTIONOFTHERISKOFSECONDARYACCIDENTSANDCONTRIBUTESTOREDUCINGTHEIRSEVERITYTHEPAPERPRESENTSTHEPOSSIBILITYOFINCLUDINGCITYTRAFFICDEPARTMENTSINTHEPROCESSOFINCIDENTMANAGEMENTTHERESULTSOFRESEARCHONTHEAUTOMATICINCIDENTDETECTIONINCITIESAREALSOPRESENTED1INTRODUCTIONTRANSPORTSYSTEMSAREAKEYELEMENTINMEETINGBASICSOCIALNEEDSRELATEDTOPOPULATIONMOBILITYANDSUPPLIESTHEYFACILITATETHEDEVELOPMENTOFECONOMICACTIVITYANDCONTRIBUTETOUPGRADINGTHEQUALITYOFLIFESOCIETYEXPECTSAHIGHLEVELOFRELIABILITYOFTRANSPORTWHILETRAVELINGTOWORK,SCHOOLSANDFORRECREATIONTODAY,SYSTEM,WECANIDENTIFYMANYINTERRELATEDANDMUTUALLYINTERACTINGELEMENTSSTRUCTURESOFORGANIZATIONOFTRAFFICSAFETYMANAGEMENTSERVICES,ASWELLASLEGALBASESANDPROCEDURESTHATDETERMINETHEORGANIZATION,COMPETENCESANDCOLLABORATIONOFSUCHSERVICES,TOOLSINFLUENCINGTHEIMPROVEMENTOFTRAFFICSAFETYMANAGEMENTATTHESTRATEGICLEVELEGREGIONAL,LOCALANDSECTORALPROGRAMSOFTRAFFICSAFETYMANAGEMENT,INCLUDINGMONITORINGOFTHEIRIMPLEMENTATIONANDTHEOPERATIONALLEVELCURRENTMONITORINGANDSUPERVISION,BROADERSUPPORTTOOLSFORSYSTEMMANAGEMENTEGDATABASES,INFORMATIONSYSTEMS,EXPERTSYSTEMS,GUIDELINESANDEXAMPLESOFGOODPRACTICE,ITSSERVICESBASEDONSCIENTIFICRESEARCH,MANAGEMENTMETHODSFORTHEWHOLESYSTEMANDITSSELECTEDELEMENTSINCLUDINGRISKMANAGEMENTTHENATIONALROADSAFETYPROGRAMFOR20132020INDICATEDTHATTHEPROCESSOFIMPROVINGTRAFFICSAFETYREQUIRESTHEUSEOFUPTOTHREECONSECUTIVEANDINTERLINKEDCOMPONENTSINSTITUTIONALMANAGEMENTFUNCTIONS,SPECIFICACTIONSINTERVENTIONSANDOUTCOMESBASICFUNCTIONSOFINSTITUTIONALMANAGEMENTINCLUDEDCOORDINATION,LEGISLATION,FINANCINGANDPROVISIONOFRESOURCES,PROMOTIONANDCOMMUNICATION,MONITORINGANDEVALUATION,ASWELLASRESEARCH,DEVELOPMENTANDKNOWLEDGETRANSFERTHEDIAGNOSISOFTHEEXISTINGSYSTEMOFSAFETYMANAGEMENTCARRIEDOUTINTHEFRAMEWORKOFTHENATIONALROADSAFETYPROGRAMHASSHOWNTHATEACHOFTHESEFUNCTIONSNEEDSTOBEIMPROVEDINTERMSOFIMPLEMENTATIONOFMEASURESINCLUDEDINTHEPROGRAMTHESEFUNCTIONSAREPERFORMEDINDIFFERENTPROPORTIONSDEPENDINGONTHEPARTICULARINSTITUTIONANDTHELEVELOFPUBLICADMINISTRATIONTHEYHIGHLIGHTEDTHENEEDTOIMPROVEORGANIZATIONALSTRUCTURESOFTRAFFICSAFETYANDCOORDINATIONWITHTHENATIONALROADSAFETYCOUNCILASALEADINGINSTITUTION,ASWELLASWITHREGIONALROADSAFETYCOUNCILSASTHEREALLEADERSOFTHEREGION–WITHTHESUPPORTOFRESEARCH
      下載積分: 10 賞幣
      上傳時(shí)間:2024-03-15
      頁(yè)數(shù): 13
      7人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2024-01-07
      大?。?0.13(MB)
      子文件數(shù):
      10人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2024-01-07
      大?。?0.84(MB)
      子文件數(shù):
      10人已閱讀
      ( 4 星級(jí))
    • 下載積分: 14 賞幣
      上傳時(shí)間:2024-01-07
      大?。?2.05(MB)
      子文件數(shù):
      11人已閱讀
      ( 4 星級(jí))
    • 下載積分: 14 賞幣
      上傳時(shí)間:2024-01-07
      大?。?1.28(MB)
      子文件數(shù):
      11人已閱讀
      ( 4 星級(jí))
    • 簡(jiǎn)介:出處出處SHERMEAEANOVELMETHODFORAUTOMATICMODULATIONRECOGNITIONJAPPLIEDSOFTCOMPUTING,2012,121453461中文中文5015字一種新的自動(dòng)調(diào)制識(shí)別的方法一種新的自動(dòng)調(diào)制識(shí)別的方法摘要數(shù)字信號(hào)的自動(dòng)調(diào)制識(shí)別在各種各樣的應(yīng)用中起著重要的作用。本文研究一種用于數(shù)字調(diào)制的準(zhǔn)確的系統(tǒng)的設(shè)計(jì)。首先,它引入了一個(gè)高效的模式識(shí)別系統(tǒng),其包括兩個(gè)主要模塊特征提取模塊和分類模塊。特征提取模塊提取一種合適的組合,即高達(dá)八階的瞬時(shí)量、高達(dá)八階的高階累積量以及數(shù)字調(diào)制的瞬時(shí)特性。這些特征的組合是第一次被運(yùn)用在這一領(lǐng)域中。在分類器模塊,兩類重要的被控制的分類器,基于分類器的MLP神經(jīng)網(wǎng)絡(luò)以及多層多級(jí)支持向量機(jī)器被研究。通過(guò)實(shí)驗(yàn)性的研究,我們?yōu)榧榷ǖ恼{(diào)制的識(shí)別選擇了最合適的分類器。然后,我們提出了一個(gè)混合啟發(fā)式識(shí)別系統(tǒng),在這個(gè)系統(tǒng)中一個(gè)優(yōu)化模塊被添加上用來(lái)改善分類器通常的表現(xiàn)。在這個(gè)模塊中,我們提出了一個(gè)叫做蜜蜂算法的新的優(yōu)化算法。該模塊通過(guò)尋找適合其判別函數(shù)的參數(shù)的最佳值來(lái)優(yōu)化分類器的設(shè)計(jì)。仿真結(jié)果表明,所提出的混合智能技術(shù)有很高的識(shí)別精度,即使是在特征不明顯的低信噪比的情況下。1引言自動(dòng)調(diào)制識(shí)別是一種識(shí)別在接收機(jī)處接收到的信號(hào)的類型的技術(shù)。它在軍事和民用領(lǐng)域都發(fā)揮著重要的作用。例如,在軍事應(yīng)用中,它可用于電子監(jiān)視,干擾識(shí)別和干擾監(jiān)控。廣泛的民用應(yīng)用包括頻譜管理,網(wǎng)絡(luò)流量管理,信號(hào)確認(rèn),軟件無(wú)線電,智能解調(diào)器,認(rèn)知無(wú)線電等。由于在例如軟件無(wú)線電這樣的新技術(shù)中對(duì)數(shù)字信號(hào)使用的不斷增長(zhǎng),近期的研究一直集中在識(shí)別這些信號(hào)的類型的方面。一般地,數(shù)字信號(hào)的識(shí)別方法歸為兩大類決策理論(DT)的方法和模式識(shí)別(PR)的方法。決策理論方法使用概率論和假設(shè)檢驗(yàn)來(lái)表示出識(shí)別的問(wèn)題。決策理論方法的主要缺點(diǎn)是其計(jì)算復(fù)雜性過(guò)高,缺乏模式不匹配的魯棒性以及需要設(shè)置正確的閾值的仔細(xì)的分析。模式識(shí)別方法,不管怎樣,不需要這樣復(fù)雜的處理,它們很容易實(shí)現(xiàn)。模式識(shí)別方法可以被更進(jìn)一步地分為兩個(gè)主要的子系統(tǒng)特征提取子系統(tǒng)和分類器子系統(tǒng)。前者提取特征(例如直方圖,光譜特性,瞬時(shí)特性,第二階距和第四階矩的結(jié)合,對(duì)稱性等),并且后者決定信號(hào)的組成(例如,神經(jīng)網(wǎng)絡(luò),K近鄰,模糊邏輯分類器等)。從現(xiàn)有的出版物來(lái)看,這件事看起來(lái)很明顯,即在設(shè)計(jì)一個(gè)用來(lái)自動(dòng)識(shí)別數(shù)字信一種新的自動(dòng)調(diào)制識(shí)別的方法(1)????????BIANSIANSTNTNAIACNAIACNAA2211???????????????????????其中ACN(I)為在時(shí)間TI/FSI1,2,,NS時(shí)的歸一化的瞬時(shí)值,F(xiàn)S是采樣速率,NS是每個(gè)信號(hào)周期的采樣點(diǎn)數(shù)AT是AN(I)的閾值,低于這個(gè)值時(shí)瞬時(shí)相位的估計(jì)對(duì)噪聲是非常敏感的。它可以被用來(lái)識(shí)別ASK2和ASK4因?yàn)閷?duì)ASK2而言,其瞬時(shí)幅度的絕對(duì)值是一個(gè)常量。212AP?非弱信號(hào)段的瞬時(shí)相位的居中非線性成分的絕對(duì)值的標(biāo)準(zhǔn)差。(2)2211NTNTAPNLINLIAIAAIACC?????????????????????????C為在中的采樣點(diǎn)數(shù)(在瞬時(shí)時(shí)間時(shí)刻),表示非弱部分????INL?SFIT???TNAIA?的點(diǎn)。,在文獻(xiàn)中定義為,在這里我們將它改??0?????INLI0??????????SNISIN101進(jìn)為。??????????STNNAIASIC?10213AF?截獲的信號(hào)的非弱段的標(biāo)準(zhǔn)中心化瞬時(shí)頻率的絕對(duì)值的標(biāo)準(zhǔn)差(3)????????2211????????????????????TNTNAIANAIANAFIFCIFC???,RS是數(shù)字序列的采樣率,C是??????????????????NIFFCSCNIFNMMIFIFRIFIF11,,在中的采樣點(diǎn)數(shù)(在瞬時(shí)時(shí)間),表示非弱部分的點(diǎn)。????IFNSFIT???TNAIA?這個(gè)特征可以區(qū)分沒(méi)有頻率信息的調(diào)制方案與FSK調(diào)制方案以及FSK2和FSK4調(diào)制方案。214MAX?截取的信號(hào)段的歸一化中心瞬時(shí)幅度的功率譜密度的最大值。它被定義為
      下載積分: 10 賞幣
      上傳時(shí)間:2024-03-16
      頁(yè)數(shù): 10
      17人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2024-01-07
      大?。?0.56(MB)
      子文件數(shù):
      13人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2024-01-07
      大?。?0.56(MB)
      子文件數(shù):
      16人已閱讀
      ( 4 星級(jí))
    • 簡(jiǎn)介:APPLIEDSOFTCOMPUTING122012453–461CONTENTSLISTSAVAILABLEATSCIVERSESCIENCEDIRECTAPPLIEDSOFTCOMPUTINGJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/ASOCANOVELMETHODFORAUTOMATICMODULATIONRECOGNITIONATAOLLAHEBRAHIMZADESHERMEFACULTYOFELECTRICALANDCOMPUTERENGINEERING,BABOLUNIVERSITYOFTECHNOLOGY,BABOL,IRANARTICLEINFOARTICLEHISTORYRECEIVED15SEPTEMBER2009RECEIVEDINREVISEDFORM23DECEMBER2010ACCEPTED14AUGUST2011AVAILABLEONLINE30AUGUST2011KEYWORDSMODULATIONRECOGNITIONPATTERNRECOGNITIONBEESALGORITHMHIERARCHICALSUPPORTVECTORMACHINEBASEDCLASSIFIERCOMBINATIONOFTHEHIGHERORDERMOMENTSUPTOEIGHTHANDHIGHERORDERCUMULANTSUPTOEIGHTHSPECTRALCHARACTERISTICSABSTRACTAUTOMATICRECOGNITIONOFTHEDIGITALMODULATIONPLAYSANIMPORTANTROLEINVARIOUSAPPLICATIONSTHISPAPERINVESTIGATESTHEDESIGNOFANACCURATESYSTEMFORRECOGNITIONOFDIGITALMODULATIONSFIRST,ITISINTRODUCEDANEFFICIENTPATTERNRECOGNITIONSYSTEMTHATINCLUDESTWOMAINMODULESTHEFEATUREEXTRACTIONMODULEANDTHECLASSIFIERMODULEFEATUREEXTRACTIONMODULEEXTRACTSASUITABLECOMBINATIONOFTHEHIGHERORDERMOMENTSUPTOEIGHTH,HIGHERORDERCUMULANTSUPTOEIGHTHANDINSTANTANEOUSCHARACTERISTICSOFDIGITALMODULATIONSTHESECOMBINATIONSOFTHEFEATURESAREAPPLIEDFORTHEFIRSTTIMEINTHISAREAINTHECLASSIFIERMODULE,TWOIMPORTANTCLASSESOFSUPERVISEDCLASSIFIERS,IE,MULTILAYERPERCEPTRONMLPNEURALNETWORKANDHIERARCHICALMULTICLASSSUPPORTVECTORMACHINEBASEDCLASSIFIERAREINVESTIGATEDBYEXPERIMENTALSTUDY,WECHOOSETHEBESTCLASSIFIERFORRECOGNITIONOFTHECONSIDEREDMODULATIONSTHEN,WEPROPOSEAHYBRIDHEURISTICRECOGNITIONSYSTEMTHATANOPTIMIZATIONMODULEISADDEDTOIMPROVETHEGENERALIZATIONPERFORMANCEOFTHECLASSIFIERINTHISMODULEWEHAVEUSEDANEWOPTIMIZATIONALGORITHMCALLEDBEESALGORITHMTHISMODULEOPTIMIZESTHECLASSIFIERDESIGNBYSEARCHINGFORTHEBESTVALUEOFTHEPARAMETERSTHATTUNEITSDISCRIMINANTFUNCTION,ANDUPSTREAMBYLOOKINGFORTHEBESTSUBSETOFFEATURESTHATFEEDTHECLASSIFIERSIMULATIONRESULTSSHOWTHATTHEPROPOSEDHYBRIDINTELLIGENTTECHNIQUEHASVERYHIGHRECOGNITIONACCURACYEVENATLOWLEVELSOFSNRWITHALITTLENUMBEROFTHEFEATURES?2011ELSEVIERBVALLRIGHTSRESERVED1INTRODUCTIONAUTOMATICMODULATIONRECOGNITIONISATECHNIQUETHATRECOGNIZESTHETYPEOFTHERECEIVEDSIGNALATTHERECEIVERITPLAYSANIMPORTANTROLEINMILITARYANDCIVILDOMAINSFOREXAMPLE,INMILITARYAPPLICATIONS,ITCANBEEMPLOYEDFORELECTRONICSURVEILLANCE,INTERFERENCERECOGNITIONANDMONITORINGTHEWIDERANGEOFCIVILIANAPPLICATIONSINCLUDESSPECTRUMMANAGEMENT,NETWORKTRAFFICADMINISTRATION,SIGNALCONFIRMATION,SOFTWARERADIOS,INTELLIGENTMODEMS,COGNITIVERADIO,ETCDUETOTHEINCREASINGUSAGEOFDIGITALSIGNALSINNOVELTECHNOLOGIESSUCHASSOFTWARERADIO,THERECENTRESEARCHESHAVEBEENFOCUSEDONIDENTIFYINGTHESESIGNALTYPESGENERALLY,DIGITALSIGNALTYPEIDENTIFICATIONMETHODSFALLINTOTWOMAINCATEGORIESDECISIONTHEORETICDTMETHODSANDPATTERNRECOGNITIONPRMETHODSDTMETHODSUSEPROBABILISTICANDHYPOTHESISTESTINGARGUMENTSTOFORMULATETHERECOGNITIONPROBLEM1–3THEMAJORDRAWBACKSOFDTMETHODSARETHEIRTOOHIGHCOMPUTATIONALCOMPLEXITY,LACKOFROBUSTNESSTOTHEMODELMISMATCHASWELLASCAREFULANALYSISTHATAREREQUIREDTOSETTHECORRECTTHRESHOLDVALUES4PRMETHODS,HOWEVER,DONOTNEEDSUCHCAREFULTREATMENTTHEYAREEASYTOIMPLEMENTPRMETHODSCANBEFURTHERDIVIDEDINTWOMAINSUBSYSTEMSTHEFEATUREEXTRACTIONSUBSYSTEMEMAILADDRESSABRAHAMZADEHGMAILCOMANDTHECLASSIFIERSUBSYSTEMTHEFORMEREXTRACTSTHEFEATURESEGHISTOGRAMS,SPECTRALCHARACTERISTICS,INSTANTANEOUSCHARACTERISTICS,COMBINATIONOFSECONDANDFOURTHORDERMOMENT,SYMMETRY,ETC,ANDTHELATTERDETERMINESTHEMEMBERSHIPOFSIGNALEGNEURALNETWORKS,KNEARESTNEIGHBOR,FUZZYLOGICCLASSIFIER,ETC4–19FROMTHEPUBLISHEDWORKS,ITAPPEARSCLEARTHATINTHEDESIGNOFASYSTEMFORAUTOMATICRECOGNITIONOFDIGITALSIGNALTYPEMODULATION,THEREARESOMEIMPORTANTISSUES,WHICH,IFSUITABLYADDRESSED,LEADTOTHEDEVELOPMENTOFMOREROBUSTANDEFFICIENTRECOGNIZERSONEOFTHESEISSUESISRELATEDTOTHECHOICEOFTHECLASSIFICATIONAPPROACHTOBEADOPTEDLITERATUREREVIEWSHOWSTHATDESPITEITSGREATPOTENTIAL,THEAPPLICATIONOFDIFFERENTSUPERVISEDCLASSIFIERHASNOTRECEIVEDTHEATTENTIONITDESERVESINTHEMODULATIONCLASSIFICATIONTHEREFORE,INTHISPAPERWEINVESTIGATEDTHEPERFORMANCESOFMULTILAYERPERCEPTRONNEURALNETWORKMLP20,ANDSUPPORTVECTORMACHINESVM21,22INTHISPAPER,WEHAVEUSEDTHESVMSINTHESTRUCTUREOFTHEPROPOSEDHIERARCHICALCLASSIFIERCHOOSINGTHERIGHTFEATURESETISSTILLANOTHERISSUEINTHISPAPER,ASUITABLESETOFTHEINSTANTANEOUSCHARACTERISTICS,THEHIGHERORDERMOMENTSUPTOEIGHTHANDTHEHIGHERORDERCUMULANTSUPTOEIGHTHAREPROPOSEDASTHEEFFECTIVEFEATURESTURNINGBACKTOTHEDIGITALSIGNALRECOGNITIONSYSTEMS,ITISFOUNDTHAT1FEATURESELECTIONISNOTPERFORMEDINACOMPLETELYAUTOMATICWAYAND2THESELECTIONOFTHEBESTFREEPARAMETERSOFTHEADOPTEDCLASSIFIERAREGENERALLYDONEEMPIRICALLYMODELSELECTIONISSUEANOTHERISSUETHATISADDRESSEDINTHISPAPERISOPTIMIZATIONINTHISMODULEWEHAVEUSEDANEW15684946/–SEEFRONTMATTER?2011ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JASOC201108025AESHERME/APPLIEDSOFTCOMPUTING122012453–461455WHEREMISTHEMEANOFTHERANDOMVARIABLETHEDEFINITIONFORTHEITHMOMENTFORAFINITELENGTHDISCRETESIGNALISGIVENBY?IN?K1SK?MIFSK7WHERENISTHEDATALENGTHINTHISSTUDYSIGNALSAREASSUMEDTOBEZEROMEANTHUS?IN?K1SIKFSK8NEXT,THEAUTOMOMENTOFTHERANDOMVARIABLEMAYBEDEFINEDASFOLLOWSMPQESP?QS?Q9WHEREPISCALLEDTHEMOMENTORDERANDSSTANDSFORCOMPLEXCONJUGATIONOFSASSUMEAZEROMEANDISCRETEBASEDBANDSIGNALSEQUENCEOFTHEFORMSKAKJBKUSINGTHEDEFINITIONOFTHEAUTOMOMENTS,THEEXPRESSIONSFORDIFFERENTORDERSMAYBEEASILYDERIVEDFOREXAMPLEM83ES5S?3EAJB5A?JB3?M83EA5J5A4BJ210A3B2J310A2B3J45AB4J5B5A3?J3A2BJ23AB2?J3B3?M83EA8J2A7B?J22A6B2?J36A5B3J560A3B5J62A2B6?J72AB7?J8B8?M83EA82A6B2?2A2B6?B810CONSIDERASCALARZEROMEANRANDOMVARIABLESWITHCHARACTERISTICFUNCTION?FTE{EJTS}11EXPANDINGTHELOGARITHMOFTHECHARACTERISTICFUNCTIONASATAYLORSERIES,ONEOBTAINSLOG?FTK1JTKRJTRR12THECONSTANTSKRIN12ARECALLEDTHECUMULANTSOFTHEDISTRIBUTIONOFSTHESYMBOLISMFORPTHORDEROFCUMULANTISSIMILARTOTHATOFTHEPTHORDERMOMENTMORESPECIALLYCPQCUMS,,S????P?QTERMS,S?,,S?????QTERMS13FOREXAMPLEC81CUMS,S,S,S,S,S,S,S?14THENTHORDERCUMULANTISAFUNCTIONOFTHEMOMENTSOFORDERSUPTOANDINCLUDINGNMOMENTSMAYBEEXPRESSEDINTERMSOFCUMULANTSASMS1,,SN??VCUM{SJ}J∈V1CUM{SJ}J∈VQ15WHERETHESUMMATIONINDEXISOVERALLPARTITIONSVV1,,VQFORTHESETOFINDEXES1,2,,N,ANDQISTHENUMBEROFELEMENTSINAGIVENPARTITIONCUMULANTSMAYBEALSOBEDERIVEDINTERMSOFMOMENTSCUMS1,,SN??V?1Q?1Q?1E???J∈V1SJ??E???J∈VQSJ??16WHERETHESUMMATIONISBEINGPERFORMEDONALLPARTITIONSVV1,,VQFORTHESETOFINDICES1,2,,NWEHAVECOMPUTEDALLOFTHEHIGHERORDERFEATURESFORTHEDIGITALCOMMUNICATIONSIGNALSTHATARECONSIDEREDTABLE1SHOWSTHESOMEOFTHETHEORETICALVALUESOFTHEHIGHERORDERSTATISTICSFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPESTHESEVALUESARECOMPUTEDTABLE1SOMEOFTHEHIGHERORDERFEATURESFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPESPSK2QAM16QAM64M41100M611?132?13M84131339C61162081797C80?244?1399?115C84?24417380UNDERTHECONSTRAINTOFUNITVARIANCEINNOISEFREEANDNORMALIZEDBYTHEORETICALSIGNALPOWER,IE,THESEVALUESAREOBTAINEDASSUMINGTHESIGNALISCLEANANDOFINFINITELENGTHHOWEVER,INPRACTICESIGNALSAREUSUALLYSUBJECTTOSOMETYPEOFDISTORTION,EITHERINSIDETHETRANSMITTERORDURINGTRANSMISSION,ANDAREOFFINITELENGTHFIG1SHOWSONEOFTHEHIGHERORDERFEATURESFORANUMBEROFTHECONSIDEREDDIGITALSIGNALTYPES3CLASSIFIERINTHISPAPER,TWOIMPORTANTSUPERVISEDCLASSIFIERSHAVEUSEDFOLLOWINGPHRASESDESCRIBESBRIEFLYTHESECLASSIFIERS31MLPNEURALNETWORKANMLPNEURALNETWORKCONSISTSOFANINPUTLAYEROFSOURCENODES,ONEORMOREHIDDENLAYERSOFCOMPUTATIONNODESANDANOUTPUTLAYER21THEISSUEOFLEARNINGALGORITHMANDITSSPEEDISVERYIMPORTANTFORMLPONEOFTHEMOSTPOPULARLEARNINGALGORITHMSISBACKPROPAGATIONBPALGORITHMHOWEVERUNDERCERTAINCONDITIONS,THEBPNETWORKCLASSIFIERCANPRODUCENONROBUSTCLASSIFICATIONRESULTSANDEASILYCONVERGETOALOCALMINIMUMMOREOVERITISTIMECONSUMINGINTRAININGPHASEINRECENTYEARS,NEWLEARNINGALGORITHMSHAVEBEENPROPOSEDFORNEURALNETWORKTRAININGINTHISPAPER,THERESILIENTBACKPROPAGATIONRPROPALGORITHMISUSEDASTHELEARNINGALGORITHMOFTHEMLPNEURALNETWORK26RPROPCONSIDERSTHESIGNOFDERIVATIVESASTHEINDICATIONFORTHEDIRECTIONOFTHEWEIGHTUPDATEINDOINGSO,THESIZEOFTHEPARTIALDERIVATIVEDOESNOTINFLUENCETHEWEIGHTSTEPTHEFOLLOWINGEQUATIONSHOWSTHEADAPTATIONOFTHEUPDATEVALUESOF?IJWEIGHTCHANGESFORTHERPROPALGORITHMFORINITIALIZATION,ALL?IJARESETTOSMALLPOSITIVEVALUES?IJT??????????IJT?1IFIEIWIJT?1IEIWIJT?0????IJT?1IFIEIWIJT?1IEIWIJT?0?0??IJT?1OTHERWISE17WHERE?01,0????1??,??,0,AREKNOWNASTHEUPDATEFACTORS,WIJREPRESENTSTHEWEIGHTVALUEFROMNEURONJTONEURONI,ANDEREPRESENTSTHEERRORFUNCTIONWHENEVERTHEDERIVATIVEOFTHECORRESPONDINGWEIGHTCHANGESITSSIGN,ITIMPLIESTHATTHEPREVIOUSUPDATEVALUEISTOOLARGEANDITHASSKIPPEDAMINIMUMTHEREFORE,THEUPDATEVALUEISTHENREDUCED??ASSHOWNABOVEHOWEVER,IFTHEDERIVATIVERETAINSITSSIGN,THEUPDATEVALUEIS?INCREASEDTHISWILLHELPTOACCELERATECONVERGENCEINSHALLOWAREASTOAVOIDOVERACCELERATION,INTHEEPOCHFOLLOWINGTHEAPPLICATIONOF?,THENEWUPDATEVALUEISNEITHERINCREASEDNORDECREASED?0FROMTHEPREVIOUSONENOTETHATVALUESOF?IJREMAINNONNEGATIVEINEVERYEPOCHTHISUPDATEVALUEADAPTATIONPROCESSISTHENFOLLOWEDBYTHE
      下載積分: 10 賞幣
      上傳時(shí)間:2024-03-13
      頁(yè)數(shù): 9
      15人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2023-07-21
      大?。?0.3(MB)
      子文件數(shù):
      29人已閱讀
      ( 4 星級(jí))
    • 下載積分: 14 賞幣
      上傳時(shí)間:2024-01-07
      大?。?1.48(MB)
      子文件數(shù):
      7人已閱讀
      ( 4 星級(jí))
    • 下載積分: 14 賞幣
      上傳時(shí)間:2024-01-07
      大?。?1.63(MB)
      子文件數(shù):
      9人已閱讀
      ( 4 星級(jí))
    • 下載積分: 14 賞幣
      上傳時(shí)間:2024-01-07
      大?。?2.44(MB)
      子文件數(shù):
      13人已閱讀
      ( 4 星級(jí))
    • 下載積分: 13 賞幣
      上傳時(shí)間:2023-07-21
      大?。?1.48(MB)
      子文件數(shù):
      19人已閱讀
      ( 4 星級(jí))
    關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服客服 - 聯(lián)系我們

    機(jī)械圖紙?jiān)创a,實(shí)習(xí)報(bào)告等文檔下載

    備案號(hào):浙ICP備20018660號(hào)