-
簡介:附錄A原文ASIMULATIONOFARCGENERATIONATACDCNEUTRALSECTIONOFELECTRICRAILWAYYOUNGSOOHAN,KYUHYOUNGCHOIABSTRACTTHISPAPERPROVIDESANEXPERIMENTALANDTHEORETICALANALYSISOFTHEARCDISCHARGESGENERATEDBETWEENCONTACTWIREANDPANTOGRAPHOFHIGHSPEEDRAILWAYAVIDEOBASEDARCDETECTIONDEVICEISINSTALLEDONTHEKTXTRAIN,ANDARCDISCHARGESAREMEASUREDFORA4587KMTRACKSECTIONOFHIGHSPEEDRAILWAYINKOREAITISMEASUREDTHATTHERATEOFCONTACTLOSSIS03WHICHISLOWERTHANTHEREGULATEDVALUEOF10FORHIGHSPEEDTRAIN,ANDARCDISCHARGESINDUCEDBY21SMALLSIZECONTACTLOSSESAND6MEDIUMSIZECONTACTLOSSESOCCURCONTINUOUSLYALONGTHETRACKTHEPOWEROFARCDISCHARGEBETWEENCONTACTWIREANDPANTOGRAPHISCALCULATEDAS90225KWWHICHISAPPROXIMATELYONEHUNDREDTHOFTHATOFTHEARCDISCHARGESGENERATEDATTHENEUTRALSECTIONOFCONTACTWIRETHERESULTSOFTHEMEASUREMENTANDTHEANALYSISSUPPOSETHATASTUDYBEFOLLOWEDTOSUPPRESSARCDISCHARGESANDCONTACTWIREDAMAGESFORTHESAFEOPERATIONOFHIGHSPEEDRAILWAYINDEXTERMSELECTRICRAILWAYARCDISCHARGECONTACTLOSSCONTACTWIREPANTOGRAPHNEUTRALSECTIONINOMENCLATURES/SSUBSTATIONOFELECTRICRAILWAYSPSECTIONINGPOSTSSPSUBSECTIONINGPOSTATAUTOTRANSFORMERTFTROLLEYFEEDERAFAUTOTRANSFORMERFEEDERFPWFAULTPROTECTIVEWIRENWNEUTRALWIRENSNEUTRALSECTIONCCTVCLOSEDCIRCUITTELEVISIONEMIELECTROMAGNETICINTERFERENCELANLOCALAREANETWORKMCBMAINCIRCUITBREAKERKTXKOREATRAINEXPRESSIIINTRODUCTIONCATENARYSYSTEMSPLAYAIMPORTANTROLEINSUPPLYINGELECTRICPOWERWITHOUTINTERRUPTIONTOTRAINSMOVINGFASTTHEPANTOGRAPHSINSTALLEDONTRAINCOLLECTCURRENTSFORTRACTIONWHILEKEEPINGINCONTACTWITHTHECATENARYSYSTEMARCDISCHARGESOCCURTHECONTACTLOSSPHENOMENAARECLASSIFIEDINTOTHREEGROUPSACCORDINGTOTHEIRDURATIONSMALLSIZE,MEDIUMSIZEANDLARGESIZESMALLSIZECONTACTLOSSISINDUCEDBYDELICATEVIBRATIONOFPANTOGRAPH,ANDCONTINUESFORSEVERALTENTHSOFASECONDMEDIUMSIZECONTACTLOSSESOCCURWHENTRAINSPASSTHROUGHTHEUNEVENSTIFFPOINTOFTHECONTACTWIRE,ANDCONTINUESFORASECONDANDBELOWLARGESIZECONTACTLOSSES,CONTINUINGFORSEVERALSECONDS,AREINDUCEDBYJUMPINGMOVEMENTSOFPANTOGRAPHAFTERPASSINGTHROUGHBRACKETSUPPORTINGPOINTSOFCONTACTWIRECONTACTWIRESHAVESEVERALNEUTRALSECTIONSINSULATEDFROMOTHERPARTSOFCONTACTWIRES,INOTHERWORDSDEADSECTIONS,WHICHDIVIDETHESECTIONSHAVINGDIFFERENTPHASESANDDIFFERENTSUPPLYVOLTAGESSUCHASAC25,000VORDC1,500VTRAINSSHOULDGOINTOTHENEUTRALSECTIONSAFTERMAKINGNOTCHOFFOPERATIONWHICHBREAKSTHETRAINCURRENTBYMCB,OTHERWISETHETRAINCURRENTISINTERRUPTEDBYTHENEUTRALSECTIONWHICHRESULTINALARGEARCDISCHARGEBETWEENTHECONTACTWIREANDTHEPANTOGRAPHASSHOWNINFIG2THISARCDISCHARGEALSOHAPPENSWHENTRAINGOINTOTHEVOLTAGESUPPLIEDSECTIONFROMTHENEUTRALSECTION
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 13
大?。?0.39(MB)
子文件數(shù):
-
簡介:APPLIEDSOFTCOMPUTING112011103–110CONTENTSLISTSAVAILABLEATSCIENCEDIRECTAPPLIEDSOFTCOMPUTINGJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/ASOCMODELINGANDSIMULATIONOFCHAOTICPHENOMENAINELECTRICALPOWERSYSTEMSDEEPAKKUMARLAL,KSSWARUP?DEPARTMENTOFELECTRICALENGINEERING,INDIANINSTITUTEOFTECHNOLOGY,MADRAS,CHENNAI600036,INDIAARTICLEINFOARTICLEHISTORYRECEIVED23DECEMBER2007RECEIVEDINREVISEDFORM30OCTOBER2009ACCEPTED15NOVEMBER2009AVAILABLEONLINE18NOVEMBER2009KEYWORDSNONLINEARSYSTEMCHAOSHOFFBIFURCATIONDOUBLESCROLLEQUATIONDYNAMICALSYSTEMLIMITSETSPOWERSYSTEMINSTABILITYABSTRACTMODELINGANDSIMULATIONOFNONLINEARSYSTEMSUNDERCHAOTICBEHAVIORISPRESENTEDNONLINEARSYSTEMSANDTHEIRRELATIONTOCHAOSASARESULTOFNONLINEARINTERACTIONOFDIFFERENTELEMENTSINTHESYSTEMAREPRESENTEDAPPLICATIONOFCHAOTICTHEORYFORPOWERSYSTEMSISDISCUSSEDTHROUGHSIMULATIONRESULTSSIMULATIONOFSOMEMATHEMATICALEQUATIONS,EGVANDERPOL’SEQUATION,LORENZ’SEQUATION,DUFFING’SEQUATIONANDDOUBLESCROLLEQUATIONSAREPRESENTEDTHEORETICALASPECTSOFDYNAMICALSYSTEMS,THEEXISTENCEOFCHAOSINPOWERSYSTEMANDTHEIRDEPENDENCYONSYSTEMPARAMETERSANDINITIALCONDITIONSUSINGCOMPUTERSIMULATIONSAREDISCUSSEDFROMTHERESULTSONECANEASILYUNDERSTANDTHESTRANGEATTRACTORANDTRANSIENTSTAGESTOVOLTAGECOLLAPSE,ANGLEINSTABILITYORVOLTAGECOLLAPSEANDANGLEDIVERGENCESIMULTANEOUSLYIMPORTANTSIMULATIONRESULTSOFCHAOSFORAMODELTHREEBUSSYSTEMAREPRESENTEDANDDISCUSSED?2009ELSEVIERBVALLRIGHTSRESERVED1INTRODUCTIONCHAOTICPHENOMENAHAVEBEENDRAWINGEXTENSIVEATTENTIONINVARIOUSFIELDSOFNATURALSCIENCE1RECENTDEVELOPMENTSINNONLINEARSYSTEMTHEORIESALLOWONETOUNDERSTANDANDANALYZESEVERALCOMPLEXBEHAVIORSINPOWERSYSTEMSNONLINEARPHENOMENASUCHASBIFURCATIONANDCHAOSINPOWERSYSTEMSHASBEENOBSERVEDINTHEPOWERSYSTEMNETWORKSDURINGTHEPASTFEWYEARS2DISTURBANCESINPOWERSYSTEMCAUSESCHANGEINPARAMETERSWHICHRESULTINTHESYSTEMEXHIBITINGCHAOTICBEHAVIORWHENCHAOSBREAKS,ITENTERSINTODIFFERENTINSTABILITYMODES,WHICHCAUSESTHEPOWERSYSTEMSTOEXHIBITINSTABILITYWHICHNEEDSTOBEAVOIDEDMOSTOFTHEPHYSICALSYSTEMSINNATUREARENONLINEARANDASARESULTPOWERFULMATHEMATICALTOOLSAREREQUIREDFORANALYSIS3,4ITISDESIRABLETOMAKELINEARASSUMPTIONSWHENEVERACOMPROMISECANBEOBTAINEDBETWEENTHESIMPLICITYOFANALYSISANDACCURACYOFRESULTSCHAOTICPHENOMENAAREONETYPEOFUNDETERMINISTICOSCILLATIONEXISTINGINDETERMINISTICSYSTEMSTHEYARERELATEDTORANDOM,CONTINUOUSANDBOUNDEDOSCILLATIONANDNOTDYNAMICALLYSTABLEANDMAYFACESERIOUSPROBLEMSFROMANOPERATIONVIEWPOINTTHEHOFFBIFURCATIONANDCHAOSLIMITTHELOADABILITYOFTHEPOWERSYSTEMANDAREUNWANTEDPHENOMENA5FORTHEIRCOMPLEXITY,MECHANISMOFCHAOTICPHENOMENAISVERYLITTLEKNOWNUPTONOWTHEREISNOGENERALLYACCEPTEDDEFINITIONOFCHAOSHENCEISCALLEDSTRANGE?CORRESPONDINGAUTHORATDEPARTMENTOFELECTRICALENGINEERING,INDIANINSTITUTEOFTECHNOLOGY,MADRAS,ELECTRICALSCIENCEBLOCKESB245D,CHENNAI600036,TAMILNADU,INDIATEL914422574440FAX914422574402EMAILADDRESSSWARUPEEIITMACINKSSWARUPATTRACTORDISCOVERYOFCHAOSENHANCESOURUNDERSTANDINGOFCOMPLEXANDUNPREDICTABLEBEHAVIORSARISINGFROMAWIDEVARIETYOFSYSTEMSINENGINEERINGANDSCIENCES,MAINLYINNONLINEARSYSTEMSRESEARCHALSO,STUDYONCHAOTICPHENOMENAISONEIMPORTANTPARTOFPOWERSYSTEMSTABILITYSTUDIES6,7INTHISPAPERTHENUMERICALSIMULATIONOFTHEMATHEMATICALRELATIONSFORCHAOSOCCURRINGINPOWERSYSTEMSHAVEBEENSIMULATEDTHEBEHAVIOROFTHESYSTEMUNDERVARIOUSOPERATINGCONDITIONSISPRESENTEDTHEPAPERISORGANIZEDASFOLLOWSTHEORETICALFORMULATIONANDMATHEMATICALREPRESENTATIONOFCHAOSISGIVENINSECTION2SECTION3PROVIDESTHESTEADYSTATEBEHAVIOROFNONLINEARSYSTEMSMODELINGOFCHAOTICBEHAVIORINPOWERSYSTEMSISDESCRIBEDINSECTION4SECTION5PROVIDESTHEIMPLEMENTATIONASPECTSOFTHECHAOSCHAOSANDINSTABILITYINPOWERSYSTEMSISPROVIDEDINSECTION6IMPORTANTCONCLUSIONSAREGIVENINSECTION72NONLINEARDYNAMICALSYSTEMSTHREETYPESOFDYNAMICALSYSTEMSAREPRESENTEDWITHSOMEUSEFULFACTSFROMTHETHEORYOFDIFFERENTIALEQUATIONS1,821AUTONOMOUSDYNAMICALSYSTEMSANNTHORDERAUTONOMOUSDYNAMICALSYSTEMISDEFINEDBYTHESTATEEQUATION˙XFXXT0X01WHERE˙XDY/DTANDXT∈?ARETHESTATEATTIMETANDF?→?ISCALLEDTHEVECTORFIELD15684946/–SEEFRONTMATTER?2009ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JASOC200911001DKLAL,KSSWARUP/APPLIEDSOFTCOMPUTING112011103–110105FIG1LIMITCYCLEBEHAVIOROFANONLINEARSYSTEMAUNDERDAMPEDSYSTEMFOR|X|?1WITHSTABLELIMITCYCLEBOVERDAMPEDSYSTEM|X|?1WITHUNSTABLELIMITCYCLETHEPHASETRAJECTORIESFORTHISEQUATIONWILLBEDIVERGEDAWAYFROMLIMITCYCLE,ANDHENCEITWILLINDICATETHELIMITCYCLEWILLBEUNSTABLE33QUASIPERIODICSOLUTIONSAQUASIPERIODICSOLUTIONISONETHATCANBEWRITTENASASUMOFPERIODICFUNCTIONSXT?IHIT11WHEREHIHASMINIMALPERIODTIANDFREQUENCYFI1/TIFURTHERMORE,THEREEXISTAFINITESETOFBASEFREQUENCIES{F1,F2,F3,,FP}WITHTHEFOLLOWINGPROPERTIESIITISLINEARLYINDEPENDENTTHATIS,THEREDOESNOTEXISTANONZEROSETOFINTEGERS{K1,K2,K3,,KP}SUCHTHATK1F1K1F1K1F1KPFPIIITFORMSAFINITEINTEGRALBASEFORFITHATIS,FOREACHI,FIK1F1K1F1K1F1KPFPFORSOMEINTEGERS{K1,K2,K3,,KP}INOTHERWORDS,AQUASIPERIODICWAVEFORMISTHESUMOFPERIODICWAVEFORMSEACHOFWHOSEFREQUENCYISONEOFTHEVARIOUSSUMSANDDIFFERENCESOFAFINITESETOFBASEFREQUENCIESNOTETHATTHEBASEFREQUENCIESARENOTUNIQUELYDEFINED,BUTTHATPISAQUASIPERIODICSOLUTIONWITHPBASEFREQUENCIESISCALLEDPPERIODICFIG2TWODIMENSIONALTRAJECTORYOFCHAOSINLORENZSYSTEMFOR?10,?28,ˇ8/3ATWODIMENSIONALCORRESPONDINGTOX–YANDY–ZAXISBTWODIMENSIONALCORRESPONDINGTOX–ZAXISANDRANDOMWAVEFORMFEATUREOFCHAOS
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 8
大?。?1.58(MB)
子文件數(shù):
-
簡介:關(guān)于標(biāo)準(zhǔn)或非標(biāo)準(zhǔn)沖擊波對電力變壓器的影響的關(guān)于標(biāo)準(zhǔn)或非標(biāo)準(zhǔn)沖擊波對電力變壓器的影響的研究研究KAVERIBHUYAN,MEMBER,IEEE,ANDSAIBALCHATTERJEE,MEMBER,IEEE摘要摘要這篇論文詣在反映電力變壓器的過電壓性能的觀察結(jié)果。這個沖擊試驗?zāi)M了在電力變壓器實際運行時存在的一個現(xiàn)象,即一個變壓器承受由于雷電或其他干擾作用于聯(lián)接線上時所產(chǎn)生的入射過電壓。一個模擬的非線性變壓器模型將幫助我們分析變壓器在不同種沖擊波形下的過電壓效應(yīng),并且將通過MATLABSIMULINK進(jìn)行仿真。對于一定范圍內(nèi)的實用波形(標(biāo)準(zhǔn)或非標(biāo)準(zhǔn))和不同的線圈鏈接方式,對于代表了實際電場下的過電壓波形的非標(biāo)準(zhǔn)雷電沖擊電壓波形和標(biāo)準(zhǔn)雷電波形的比較就可以實現(xiàn)。對于變壓器承受標(biāo)準(zhǔn)或非標(biāo)準(zhǔn)沖擊波形時的表現(xiàn)將體現(xiàn)在本論文中。對地最大電壓和隨著試驗進(jìn)行所出現(xiàn)的,針對0線圈分接和10線圈分接的貫穿線圈的過電壓也將分別被記錄和分析。關(guān)鍵詞關(guān)鍵詞建模;電力設(shè)備;標(biāo)準(zhǔn)和非標(biāo)準(zhǔn)沖擊波;變壓器線圈I緒論緒論檢查電力變壓器的正常與否對供電的可靠性至關(guān)重要。沖擊試驗是一種有效的控制工具,它在電力變壓器上執(zhí)行,用以評估它們絕緣的完全性1。變壓器絕緣在很大程度上視瞬時電壓和線圈上的壓力而決定2。帶有長波和大數(shù)量級的不同的沖擊電壓可能是因為操作失誤,雷電過電壓或?qū)嶒炇业臎_擊電壓試驗所造成的3。假設(shè)進(jìn)行雷電沖擊電壓試驗,12/50ΜS的標(biāo)準(zhǔn)雷電過電壓波形常被用于變壓器試驗4。當(dāng)變壓器用標(biāo)準(zhǔn)波形的過電壓試驗時,由于部分線圈的共振,實際上線圈的絕緣承受的是(單向或雙向震動的)非標(biāo)準(zhǔn)波。同樣,在實踐中電力系統(tǒng)的所有組成部分都要承受由雷電或操作引起的不同種波形的瞬時過電壓的危險。因此,在非標(biāo)準(zhǔn)沖擊波下估算絕緣體的絕緣強度是十分必要的4。電力系統(tǒng)50以上的故障是由于線圈的絕緣故障引起的4。為了設(shè)計絕緣結(jié)構(gòu),了解貫穿于絕緣結(jié)構(gòu)的電壓變化和針對特定電壓波形的絕緣強度情況是十分必要的2。SIMULINK模塊基于3MVA,33/11KV的三相變壓器的參數(shù)而建立2。80個主線圈和8個額外線圈被用作裝配線圈5。對于中性點接地的變壓器線圈在標(biāo)準(zhǔn)沖擊電壓波12/50ΜS下、在3ΜS,8ΜS和15ΜS下的截波下以及在非標(biāo)準(zhǔn)沖擊波下的性能研究已經(jīng)完成。暫態(tài)研究的基礎(chǔ)就是標(biāo)準(zhǔn)和非標(biāo)準(zhǔn)沖擊波下變壓器線圈的暫態(tài)響應(yīng)。II研究框架研究框架在研究中,線圈受不同種沖擊波作用,并且隨著測定時間進(jìn)行線圈的在圖2的(A)和(B)中,特性曲線表明了10抽頭線圈的對地電壓的最大值和隨著測定時間進(jìn)行的,線圈間電壓分別在全波、3ΜS,8ΜS和15ΜS截波、脈沖波、雙脈沖波形和阻尼振蕩波下的波形的不同。針對10抽頭線圈的過電壓響應(yīng)的對地電壓的最大值的對比性研究已經(jīng)完成,它是在實際的全波、3ΜS,8ΜS和15ΜS截波、脈沖波、雙脈沖波形和阻尼振蕩情況下研究的。觀察結(jié)果被記錄在表II中。圖210抽頭時線圈的對地電壓最大值的變化情況表210抽頭時線圈的對地電壓最大值的變化情況
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 15
大小: 0.52(MB)
子文件數(shù):
-
簡介:1ABSTRACTTHISWORKINVESTIGATESTHEIMPACTOFINCREASEDPENETRATIONOFDOUBLYFEDINDUCTIONGENERATORSDFIGSONELECTROMECHANICALMODESOFOSCILLATIONSOFALARGEINTERCONNECTEDPOWERSYSTEMTHEWORKPROPOSESACONTROLMECHANISMAIMEDATDESIGNINGTHEPOWERSYSTEMSTABILIZERPSSFORADFIGSIMILARTOTHEPSSOFSYNCHRONOUSMACHINESTHEWINDGENERATORPOWEROUTPUTISTAKENASINPUTTOTHEPSSTHEACTIVEPOWERCOMMANDISMODULATEDINPHASEOPPOSITIONTOTHEPOWERSYSTEMOSCILLATIONANDISFEDTOTHEACTIVEPOWERCONTROLLOOPOFTHEDFIGANADDITIONALCONTROLBLOCKWITHTHEDFIGTERMINALVOLTAGEASTHEPSSINPUTSIGNALISFEDTOTHEREACTIVEPOWERCONTROLLOOPTHEMECHANISMSERVESTHEPURPOSEOFIMPROVINGTHEDAMPINGOFCRITICALMODEWHICHISVALIDATEDBYEIGENVALUEANALYSISTHEWORKALSOCOMPARESTWODIFFERENTCONTROLMECHANISMSTHATCANBEEMPLOYEDFORDAMPINGLOWFREQUENCYINTERAREAMODESOFOSCILLATIONSWITHTHELATTERBASEDONTHEIDEAOFMODIFYINGTHETORQUESETPOINTOFTHEDFIGFORCHANGESINGRIDFREQUENCYTHEPROPOSEDTECHNIQUEISTESTEDONALARGETESTSYSTEMREPRESENTINGTHEMIDWESTERNPORTIONOFTHEUSINTERCONNECTIONINDEXTERMSDOUBLYFEDINDUCTIONGENERATOR,WINDTURBINEGENERATORS,TRANSIENTSTABILITY,SMALLSIGNALSTABILITY,SENSITIVITY,INERTIAIINTRODUCTIONROWINGENVIRONMENTALCONCERNSANDATTEMPTSTOREDUCEDEPENDENCYONFOSSILFUELRESOURCESAREBRINGINGRENEWABLEENERGYRESOURCESTOTHEMAINSTREAMOFTHEELECTRICPOWERSECTORAMONGTHEVARIOUSRENEWABLERESOURCES,WINDPOWERISASSUMEDTOHAVETHEMOSTFAVORABLETECHNICALANDECONOMICALPROSPECTS1WHENDEPLOYEDINSMALLSCALE,ASWASDONETRADITIONALLY,THEIMPACTOFWINDTURBINEGENERATORSWTGSONPOWERSYSTEMSTABILITYISMINIMALINCONTRAST,WHENTHEPENETRATIONLEVELINCREASES,THEDYNAMICPERFORMANCEOFTHEPOWERSYSTEMCOULDBEAFFECTEDTHISWORKWASSUPPORTEDBYTHENATIONALSCIENCEFOUNDATIONUNDERTHEGRANTSNSFECCS0652513ANDEEC9908690ATTHEPOWERSYSTEMENGINEERINGRESEARCHCENTERDURGAGAUTAMISWITHTHEDEPARTMENTOFELECTRICALENGINEERING,ARIZONASTATEUNIVERSITY,AZ,USAEMAILDURGAGAUTAMASUEDUVIJAYVITTALISWITHTHEDEPARTMENTOFELECTRICALENGINEERING,ARIZONASTATEUNIVERSITY,AZ,USAEMAILVIJAYVITTALASUEDURAJAAYYANARISWITHTHEDEPARTMENTOFELECTRICALENGINEERING,ARIZONASTATEUNIVERSITY,TEMPE,AZ85287,USAEMAILRAYYANARASUEDUTERRYHARBOURISASENIORUTILITYENGINEERAMONGTHESEVERALWINDGENERATIONTECHNOLOGIES,VARIABLESPEEDWINDTURBINESUTILIZINGDOUBLYFEDINDUCTIONGENERATORSDFIGSAREGAININGPROMINENCEINTHEPOWERINDUSTRYASTHEPERFORMANCEISLARGELYDETERMINEDBYTHECONVERTERANDTHEASSOCIATEDCONTROLS,ADFIGISANASYNCHRONOUSGENERATORSINCEDFIGSAREASYNCHRONOUSMACHINES,THEYPRIMARILYHAVEFOURMECHANISMSBYWHICHTHEYCANAFFECTTHEDAMPINGOFELECTROMECHANICALMODESSINCETHEYTHEMSELVESDONOTPARTICIPATEINTHEMODES1DISPLACINGSYNCHRONOUSMACHINESTHEREBYAFFECTINGTHEMODES2IMPACTINGMAJORPATHFLOWSTHEREBYAFFECTINGTHESYNCHRONIZINGFORCES3DISPLACINGSYNCHRONOUSMACHINESTHATHAVEPOWERSYSTEMSTABILIZERS4DFIGCONTROLSINTERACTINGWITHTHEDAMPINGTORQUEONNEARBYLARGESYNCHRONOUSGENERATORSTHEPOWERELECTRONICCONVERTERATTHEHEARTOFTHEDFIGCONTROLSTHEPERFORMANCEANDACTSASANINTERFACEBETWEENTHEMACHINEANDTHEGRIDWITHCONVENTIONALCONTROL,ROTORCURRENTSAREALWAYSCONTROLLEDTOEXTRACTMAXIMUMENERGYFROMTHEWINDHENCE,WITHTHEINCREASEDPENETRATIONOFDFIGBASEDWINDFARMS,THEEFFECTIVEINERTIAOFTHESYSTEMWILLBEREDUCEDANDSYSTEMRELIABILITYFOLLOWINGLARGEDISTURBANCESCOULDBESIGNIFICANTLYAFFECTEDINORDERTOIMPROVETHESYSTEMDAMPINGWITHTHEHIGHPENETRATIONOFDFIGBASEDWINDFARMS,THECONCEPTOFAUXILIARYPSSLOOPFORDFIGHASBEENINTRODUCEDINTHELITERATURERECENTLYTHEAUXILIARYPSSLOOPPROPOSEDIN2ISBELIEVEDTOCHANGETHESTATORCURRENTSOFDFIGSSOASTOINCREASETHEDAMPINGTORQUESOFTHESYNCHRONOUSGENERATORSINTHESYSTEMTHECONTROLPHILOSOPHYADOPTEDISSIMILARTOTHEPSSOFTHESYNCHRONOUSGENERATORSANDCONSISTSOFAWASHOUTBLOCK,PSSGAINANDPHASECOMPENSATIONWHILETHEINPUTSIGNALISDERIVEDFROMTHEDFIGSTATORELECTRICALPOWERANAUXILIARYSIGNALDERIVEDFROMTHEFREQUENCYDEVIATIONISUSEDASTHEINPUTTOTHEPSSIN3FORTHETESTSYSTEMCONSIDEREDINTHEPAPER,INTERAREAOSCILLATIONDAMPINGISFOUNDTOIMPROVEWITHTHEPROPOSEDPSSTHESUPPLEMENTARYCONTROLSIGNALDERIVEDFROMTHETERMINALVOLTAGEISUSEDASTHEINPUTTOTHEPSSIN4THESTABILIZINGSIGNALISFEDTOTHEROTORQUADRATUREVOLTAGEINTHEACTIVEPOWERCONTROLLOOPSOASTOPROVIDEADDITIONALDAMPINGSUPPLEMENTARYCONTROLFORDAMPINGPOWEROSCILLATIONSDUETOINCREASEDPENETRATIONOFDOUBLYFEDINDUCTIONGENERATORSINLARGEPOWERSYSTEMSDURGAGAUTAM,STUDENTMEMBER,IEEE,VIJAYVITTAL,FELLOW,IEEE,RAJAAYYANAR,SENIORMEMBER,IEEE,TERRYHARBOUR,MEMBER,IEEEG9781612847887/11/2600?2011IEEE3FIG1SCHEMATICDIAGRAMSHOWINGACTIVEPOWERANDPITCHANGLECONTROLLERSOFDFIGTHERATEDVALUEWHENTHEPOWEROUTPUTINCREASESBEYONDTHERATEDVALUE,PITCHCOMPENSATORACTSTOINCREASETHEPITCHANGLEANDBRINGSTHEPOWERBACKTOTHERATEDVALUETHETORQUECOMMANDTSETISUSEDTOCOMPUTEPOWERORDERPORDWHICHINTURNPROVIDESEXCITATIONCURRENTTOTHEROTORSIDECONVERTERTHEMAXIMUMACTIVEPOWERORDERPMAXFROMTHECONTROLLERISLIMITEDBYTHEACTIVEPOWERLIMITERBLOCKSHOWNINFIG1THEACTIVECURRENTCOMMANDIPISCOMPUTEDBYDIVIDINGPORDFROMTHEWINDTURBINEMODELBYTHEGENERATORTERMINALVOLTAGEVTERMTHEACTIVECURRENTCOMMANDISLIMITEDBYTHESHORTTERMACTIVECURRENTCAPABILITYOFTHECONVERTERIPMAXIIIIMPACTONSMALLSIGNALSTABILITYINANINTERCONNECTEDSYSTEM,THEABILITYTORESTOREEQUILIBRIUMBETWEENELECTROMAGNETICTORQUEANDMECHANICALTORQUEISDETERMINEDBYTHEROTORANGLESTABILITYOFEACHSYNCHRONOUSMACHINEACCORDINGLY,THEINCREASEDNUMBEROFASYNCHRONOUSGENERATORSINTHESYSTEMINFLUENCESTHENETWORKDYNAMICCHARACTERISTICSTHEVARIABLESPEEDWTGDESIGNCONSISTINGOFTHEPOWERELECTRONICSCONVERTERIMPARTSSIGNIFICANTEFFECTONTHESYSTEMDYNAMICPERFORMANCEFOLLOWINGADISTURBANCE,THECHANGEINELECTROMAGNETICTORQUEOFTHESYNCHRONOUSMACHINECANBECHARACTERIZEDBYTWOTORQUECOMPONENTS,NAMELY,THESYNCHRONIZINGTORQUECOMPONENTANDTHEDAMPINGTORQUECOMPONENTTHEPRESENTWORKFOCUSESONTHELATTERCOMPONENTWHICHIMPACTSSMALLSIGNALSTABILITYOFTHESYSTEMTHESMALLSIGNALSTABILITYPROBLEMNORMALLYOCCURSDUETOINSUFFICIENTDAMPINGTORQUEWHICHRESULTSINROTOROSCILLATIONSOFINCREASINGAMPLITUDE8THEEIGENVALUESOFTHESYSTEMMATRIXACHARACTERIZETHESTABILITYOFTHESYSTEM8THEINTRODUCTIONOFSEVERALDFIGWINDFARMDOESHAVETHEPOTENTIALTOCHANGETHEELECTROMECHANICALDAMPINGPERFORMANCEOFTHESYSTEMTHISCANBEATTRIBUTEDTOTHEREDUCEDINERTIAOFTHESYSTEMTHUSIMPACTINGTHEINERTIALMODEOFOSCILLATIONOFTHESYSTEMIVPROPOSEDCONTROLSTRATEGYTHISSECTIONPROPOSESASUPPLEMENTARYCONTROLFORADFIGSIMILARTOTHEPSSOFCONVENTIONALSYNCHRONOUSMACHINEINORDERTOENSURETHEEFFECTIVENESSOFTHEPROPOSEDMECHANISM,COMPARISONISDONEWITHTHECONTROLMECHANISMPROPOSEDIN9AEIGENVALUESENSITIVITYTHEBASISOFTHEPRESENTSTUDYLIESINTHEPREMISETHATWITHTHEINCREASEDPENETRATIONOFDFIGBASEDWINDFARMSTHEEFFECTIVEINERTIAOFTHESYSTEMWILLBEREDUCEDINTHISREGARD,AFIRSTSTEPPROPOSEDTOWARDSSTUDYINGTHESYSTEMBEHAVIORWITHINCREASEDDFIGPENETRATIONISTOIDENTIFYHOWTHESMALLSIGNALSTABILITYBEHAVIORCHANGESWITHTHECHANGEININERTIATHEAPPROACHISTHUSINTENDEDTOEVALUATEEIGENVALUESENSITIVITYWITHRESPECTTOGENERATORINERTIATHEFOLLOWINGSTEPSAREADOPTEDWHILEEVALUATINGTHESYSTEMRESPONSEWITHRESPECTTOSMALLDISTURBANCESREPLACEALLTHEDFIGSWITHCONVENTIONALSYNCHRONOUSGENERATORSOFTHESAMEMVARATINGWHICHWILLREPRESENTTHEBASECASEOPERATINGSCENARIOFORTHEASSESSMENTPERFORMEIGENVALUEANALYSISINTHEFREQUENCYRANGE01TO2HZANDDAMPINGRATIOBELOW25EVALUATETHESENSITIVITYOFTHEEIGENVALUESWITHRESPECTTOINERTIAOFEACHWINDFARMREPRESENTEDASACONVENTIONALSYNCHRONOUSMACHINEWHICHISAIMEDATOBSERVINGTHEEFFECTOFGENERATORINERTIAONDYNAMICPERFORMANCEPERFORMEIGENVALUEANALYSISFORTHECASEAFTERINTRODUCINGTHEEXISTINGASWELLASPLANNEDDFIGWINDFARMSINTHESYSTEMBDFIGPSSANDOSCILLATIONDAMPINGTHEPSSEMPLOYEDFORDFIGSINTHISPAPERCONSISTSOFINERTIACONTROLLERTOGENERATOR/CONVERTERMODEL?TSETPMAXPMINTSET?ΘPRATED1PEΘΩEΩTPMVWΩEWINDPOWERMODELROTORTWOMASSSHAFTMODELREFERENCESPEEDSETTINGTORQUECONTROLLERPORDACTIVEPOWERLIMITERPITCHANGLECOMPENSATORPITCHANGLECONTROLLERPITCHANGLELIMITERΩERR__ΩREF∑∑∑∑_÷VTERMIPMAXIPPE∑DFIGPSS_
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 6
大?。?0.76(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?1.1(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?3.02(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?0.95(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大小: 0.72(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2023-07-21
頁數(shù): 0
大?。?2.37(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大小: 0.31(MB)
子文件數(shù):
-
簡介:FUELCELLPOWERCONDITIONINGFORELECTRICPOWERAPPLICATIONSASUMMARYXYU,MRSTARKE,LMTOLBERTANDBOZPINECIABSTRACTFUELCELLSARECONSIDEREDTOBEONEOFTHEMOSTPROMISINGSOURCESOFDISTRIBUTEDENERGYBECAUSEOFTHEIRHIGHEFFICIENCY,LOWENVIRONMENTALIMPACTANDSCALABILITYUNFORTUNATELY,MULTIPLECOMPLICATIONSEXISTINFUELCELLOPERATIONFUELCELLSCANNOTACCEPTCURRENTINTHEREVERSEDIRECTION,DONOTPERFORMWELLWITHRIPPLECURRENT,HAVEALOWOUTPUTVOLTAGETHATVARIESWITHAGEANDCURRENT,RESPONDSLUGGISHLYTOSTEPCHANGESINLOADANDARELIMITEDINOVERLOADCAPABILITIESFORTHESEREASONS,POWERCONVERTERSAREOFTENNECESSARYTOBOOSTANDREGULATETHEVOLTAGEASAMEANSTOPROVIDEASTIFFAPPLICABLEDCPOWERSOURCEFURTHERMORE,THEADDITIONOFANINVERTERALLOWSFORTHECONVERSIONOFDCPOWERTOACFORANUTILITYINTERFACEORFORTHEAPPLICATIONOFANACMOTORTOHELPMOTIVATETHEUSEOFPOWERCONDITIONINGFORTHEFUELCELL,ABRIEFINTRODUCTIONOFTHEDIFFERENTTYPES,APPLICATIONSANDTYPICALELECTRICALCHARACTERISTICSOFFUELCELLSISPRESENTEDTHISISFOLLOWEDBYANEXAMINATIONOFTHEVARIOUSTOPOLOGIESOFDC–DCBOOSTCONVERTERSANDINVERTERSUSEDFORPOWERCONDITIONINGOFFUELCELLSSEVERALARCHITECTURESTOAGGREGATEMULTIPLEFUELCELLSFORHIGHVOLTAGE/HIGHPOWERAPPLICATIONSAREALSOREVIEWED1INTRODUCTIONFUELCELLSAREENVIRONMENTALLYSOUNDRENEWABLEENERGYSOURCESTHATARECAPABLEOFOPERATINGATEFFICIENCIESGREATERTHANTRADITIONALENERGYPRODUCTIONMETHODSMOREOVER,THESCALABILITYOFFUELCELLSHASALLOWEDFORAPPLICATIONSINALMOSTEVERYFIELD,INCLUDINGDISTRIBUTEDGENERATIONHOWEVER,SOMEINHERENTOBSTACLESEXISTINTHEAPPLICATIONOFFUELCELLSLOWOUTPUTVOLTAGETHATVARIESWITHAGEANDCURRENT,REDUCEDEFFICIENCYWITHOUTPUTRIPPLECURRENT,SLOWRESPONSETOALOADSTEPRESPONSE,NOOVERLOADCAPABILITYANDNOACCEPTANCEOFREVERSECURRENTPROVIDEMANYTECHNICALCHALLENGESTHATMUSTBEOVERCOMEBYPOWERCONDITIONINGSYSTEMSINTHISPAPER,ADISCUSSIONOFTHECONSTRUCTION,TYPES,APPLICATIONANDELECTRICALCHARACTERISTICSOFFUELCELLSISPRESENTEDTHISISFOLLOWEDBYANEXAMINATIONOFSEVERALDIFFERENTAPPROACHESTOPOWERCONDITIONINGSYSTEMSFORSINGLEANDMULTIPLEFUELCELLCOMBINATIONS11FUELCELLCONSTRUCTIONIN1839,WILLIAMGROVEDISCOVEREDTHATBYCOMBININGOXYGENANDHYDROGENINAPARTICULARCONFIGURATION,ELECTRICITYCOULDBEGENERATEDALTHOUGHTHISDISCOVERYWASMADEMORETHAN160YEARSAGO,THEBASICOPERATINGPRINCIPLEDISCOVEREDSTILLAPPLIESABASICSCHEMATICDIAGRAMOFAFUELCELLISSHOWNINFIG1HYDROGENISAPPLIEDTOTHEANODEWHEREACATALYSTSEPARATESTHEHYDROGENINTOELECTRONSANDPOSITIVEHYDROGENIONSAMEMBRANESEPARATINGTHEANODEANDCATHODEALLOWSTHEPOSITIVEHYDROGENIONSTOPERMEATETHROUGHWHILEREJECTINGTHEELECTRONSTHISFORCESTHEELECTRONSTOTAKETHEPROVIDEDELECTRICALPATH,ORCIRCUIT,TOTHECATHODEONCETHEELECTRONSREACHTHECATHODE,THEYRECOMBINEWITHTHEOXYGENANDHYDROGENIONSTOFORMWATERTHEFOLLOWINGBASICREACTIONSDEMONSTRATETHEPROCESSANODESIDE2H24HTT4E?CATHODESIDEO2T4HTT4E?2H2ONETREACTION2H2TO22H2OWHENPUREHYDROGENISUSEDASTHEFUEL,ONLYELECTRICITYANDWATERAREGENERATEDFROMTHEFUELCELLTHISATTRIBUTESTHEFUELCELLASANENVIRONMENTALLYFRIENDLYSOURCEOFENERGYTOOBTAINPUREHYDROGEN,AFUELPROCESSORORREFORMERISOFTENIMPLEMENTEDAREFORMERUSESFUELSSUCHASNATURALGAS,COALANDBIOMASSTOGENERATEHYDROGENTHECONSTRUCTIONOFANACTUALFUELCELLFORPOWERGENERATIONISCOMPOSEDOFSEVERALCOMPONENTSASSEENINFIG2THEFUNDAMENTALCOMPONENTSARERECTANGULARORCYLINDRICALTUBESTHATCONTAINTHEANODE,CATHODEANDMEMBRANEANDPERFORMTHEGENERATIONANDRECOMBINATIONOFELECTRONSTOCREATEAFUELCELLSTACK,THESETUBESAREBUNDLEDTOGETHERINSERIESANDPARALLELCOMBINATIONSTOPRODUCEUNITSBETWEENAFEWKILOWATTSTOAHUNDREDKILOWATTSFORUTILITYAPPLICATIONSWHERELARGESCALEPOWERISREQUIRED,THEFUELCELLSTACKSCANBEAMASSEDINTOTIERSTHESETIERSCANBEASSEMBLEDINTOSUBMEGAWATTTOMEGAWATTGENERATORASSEMBLIES12TYPESOFFUELCELLSANDTHEIRAPPLICATIONS1–6SINCEWILLIAMGROVE’SDISCOVERY,ANASSORTMENTOFFUELCELLSHASBEENDEVELOPEDTHEGENERALCLASSIFICATIONSOFTHEINSTITUTIONOFENGINEERINGANDTECHNOLOGY2007DOI101049/IETEPA20060386PAPERFIRSTRECEIVED5THOCTOBER2006ANDINREVISEDFORM19THJANUARY2007XYU,MRSTARKEANDLMTOLBERTAREWITHTHEDEPARTMENTOFELECTRICALANDCOMPUTERENGINEERING,THEUNIVERSITYOFTENNESSEE,KNOXVILLETN379962100,USABOZPINECIISWITHTHEPOWERELECTRONICSANDELECTRICMACHINERYRESEARCHCENTER,OAKRIDGENATIONALLABORATORY,OAKRIDGETN378316472,USAEMAILTOLBERTLMORNLGOVIETELECTRPOWERAPPL,2007,1,5,PP643–656643CONCENTRATIONLOSSESAREARESULTOFTHEINABILITYOFTHESURROUNDINGMATERIALTOMAINTAINTHEINITIALCONCENTRATIONOFTHEFUELASTHEREACTANTISCONSUMEDATTHEELECTRODE,THECONCENTRATIONOFTHESURROUNDINGMATERIALREDUCESONACCOUNTOFTHETRANSPORTATIONRATEOFTHEREACTANTSTHISLOSSCANBEQUITESEVEREPARTICULARLYATHIGHCURRENTDENSITIESALONGWITHTHELOSSES,THEV–IPOLARISATIONCURVEOFTHEFUELCELLISALSODEPENDENTONOPERATINGTEMPERATUREFIGS3AND4SHOWTWODIFFERENTFUELCELLCURVESWITHTHETEMPERATURESOF40AND8008C,RESPECTIVELYFORLOWTEMPERATUREFUELCELLS,THEOPENCIRCUITVOLTAGEISLOWERTHANTHEIDEALVALUE,ANDAREGIONOFACTIVATIONPOLARISATIONISPRESENTCONTRARILY,THEOPENCIRCUITVOLTAGEFORAHIGHTEMPERATUREFUELCELLISNEARLYIDENTICALTOTHEIDEALVALUEANDALMOSTNOREGIONOFACTIVATIONPOLARISATIONISACQUIRED2POWERELECTRONICSINTERFACEREQUIREMENTSCURRENTLY,NOSTANDARDOUTPUTVOLTAGERATINGFORFUELCELLSHASBEENESTABLISHEDMOSTOFTHEPRESENTFUELCELLSTACKMODULESPRODUCEANOUTPUTVOLTAGEINTHERANGE24–150VDCHOWEVER,THELARGENUMBEROFAPPLICATIONSINWHICHFUELCELLSCANBEIMPLEMENTEDNECESSITATESTHATAPOWERELECTRONICSINTERFACEBEPRESENTTHISINTERFACESHOULD?CONTROLTHEFUELCELLVOLTAGE?CONVERTTHEFUELCELLOUTPUTTOTHEAPPROPRIATETYPEANDMAGNITUDE?DELIVERAHIGHPOWERFACTORGRIDAPPLICATIONS?PROVIDELITTLETONOHARMONICS?OPERATEEFFICIENTLYUNDERALLCONDITIONSAND?ADDLITTLETOTHECOSTOFTHEOVERALLSYSTEMTHEPOWERELECTRONICSINTERFACEFORFUELCELLSOFTENUTILISEDC–DCBOOSTCONVERTERSANDINVERTERSTOBOOSTTHEFUELCELLVOLTAGEANDCONVERTTHEDCVOLTAGETOACASSEENINFIG5THEEXPECTATIONSFROMTHEBOOSTCONVERTER,INADDITIONTOBOOSTINGTHEFUELCELLVOLTAGE,AREREGULATIONOFTHEINVERTERINPUTVOLTAGEANDELECTRICALISOLATIONOFTHELOWANDHIGHVOLTAGECIRCUITSTHEINVERTERNEEDONLYCONVERTTHEDCTOACWITHREASONABLEHARMONICELIMINATIONANDCANEITHERBESINGLE,DUAL,ORTHREEPHASEDEPENDINGONTHEAPPLICATIONSINGLEANDDUALPHASEINVERTERSAREUSEDFORRESIDENTIALAPPLICATIONS,WHEREASTHREEPHASEINVERTERSAREIMPLEMENTEDININDUSTRIALAPPLICATIONSANDINCENTRALISEDPOWERGENERATIONANOTHERTOPOLOGYTHATISPOSSIBLE,BUTRARELYCAPITALISED,ISTHATOFFIG6THISTOPOLOGYNEGLECTSTHEUSEOFDC–DCCONVERTERSANDINSTEADRELIESONATRANSFORMERATTHEOUTPUTOFTHEINVERTERTOBOOSTTHEVOLTAGETHEADVANTAGEINEXERCISINGADC–DCCONVERTEROVERTHISTOPOLOGYIS2FOLDSIZEANDCOSTATRANSFORMERCAPABLEOFBOOSTINGTOAHIGHVOLTAGEISSIGNIFICANTLYBULKYANDVERYCOSTLYTHEFOLLOWINGSECTIONSDISCUSSTHESPECIFICFUELCELLRESTRICTIONSANDPOSSIBLEMETHODSFORPOWERCONVERTERSTOCOPEWITHTHESEREQUIREMENTS21NOREGENERATION/REVERSECURRENTFUELCELLS,INGENERAL,CANNOTACCEPTCURRENTTHEREFORETOOBSTRUCTCURRENTFLOWTOTHEFUELCELL,ADIODEDFCCANBEINSERTEDINSERIESWITHTHEFUELCELLMODULEASSEENINFIG3CELLVOLTAGEFORALOWTEMPERATUREAIRPRESSUREFUELCELL2FIG4VOLTAGEOFANSOFCOPERATINGATABOUT8008C2FIG5FUELCELLPOWERELECTRONICSINTERFACEBLOCKDIAGRAMFORRESIDENTIALAPPLICATIONS4FIG6FUELCELLPOWERELECTRONICSINTERFACEBLOCKDIAGRAMFORRESIDENTIALAPPLICATIONS7IETELECTRPOWERAPPL,VOL1,NO5,SEPTEMBER2007645
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 14
大?。?0.42(MB)
子文件數(shù):
-
簡介:中文中文7600字出處出處YUX,STARKEMR,TOLBERTLM,ETALFUELCELLPOWERCONDITIONINGFORELECTRICPOWERAPPLICATIONSASUMMARYJIETELECTRICPOWERAPPLICATIONS,2007,15643656英文文獻(xiàn)翻譯(譯文)英文文獻(xiàn)翻譯(譯文)題目電力應(yīng)用領(lǐng)域中的燃料電池功率調(diào)節(jié)學(xué)院(系)學(xué)院(系)自動化專業(yè)班級專業(yè)班級電氣1001班學(xué)生姓名學(xué)生姓名指導(dǎo)教師指導(dǎo)教師圖1燃料電池的基本原理圖將氫氣通向陽極,陽極上的催化劑將氫氣分解為電子和氫正離子。分隔陽極和陰極的質(zhì)子交換膜只讓氫正離子滲透過去,而阻止了電子。這使得電子不得不選擇另一條電路通向陰極。一旦電子到達(dá)陰極,它們就和氧氣、氫離子重組成水。以下是描述該過程的化學(xué)反應(yīng)式當(dāng)純氫氣被用作燃料,燃料電池只會產(chǎn)生電能和水。這使得燃料電池成為一種環(huán)境友好型能源。為了得到純凈的氫氣,要加入一個燃料處理器或者改質(zhì)器。改質(zhì)器利用天然氣、煤炭和生物作為燃料生產(chǎn)氫氣。實際用于發(fā)電的燃料電池結(jié)構(gòu)由幾個部分組成,如圖2所示。基礎(chǔ)結(jié)構(gòu)是包含陽極、陰極和質(zhì)子交換膜的矩形或圓柱形管子,其作用是執(zhí)行發(fā)電和電子重組。為了組成一個燃料電池堆,這些管子串接或并接地綁在一起來產(chǎn)生一個千瓦級至兆瓦級的單元。對于需要大規(guī)模能量的實際應(yīng)用,這些燃料電池堆可以積聚成層,這些層可以組裝成亞兆瓦至兆瓦級的發(fā)電機組件。圖2燃料電池組合結(jié)構(gòu)
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 15
大小: 0.7(MB)
子文件數(shù):
-
簡介:1552IEEETRANSACTIONSONSMARTGRID,VOL3,NO3,SEPTEMBER2012ELECTRICSPRINGSANEWSMARTGRIDTECHNOLOGYSHUYUENRONHUI,FELLOW,IEEE,CHIKWANLEE,MEMBER,IEEE,ANDFELIXFWU,FELLOW,IEEEABSTRACTTHESCIENTIFICPRINCIPLEOF“MECHANICALSPRINGS”WASDESCRIBEDBYTHEBRITISHPHYSICISTROBERTHOOKEINTHE1660’SSINCETHEN,THEREHASNOTBEENANYFURTHERDEVELOPMENTOFTHEHOOKE’SLAWINTHEELECTRICREGIMEINTHISPAPER,THISTECHNOLOGICALGAPISFILLEDBYTHEDEVELOPMENTOF“ELECTRICSPRINGS”THESCIENTIFICPRINCIPLE,THEOPERATINGMODES,THELIMITATIONS,ANDTHEPRACTICALREALIZATIONOFTHEELECTRICSPRINGSAREREPORTEDITISDISCOVEREDTHATSUCHNOVELCONCEPTHASHUGEPOTENTIALINSTABILIZINGFUTUREPOWERSYSTEMSWITHSUBSTANTIALPENETRATIONOFINTERMITTENTRENEWABLEENERGYSOURCESTHISCONCEPTHASBEENSUCCESSFULLYDEMONSTRATEDINAPRACTICALPOWERSYSTEMSETUPFEDBYANACPOWERSOURCEWITHAFLUCTUATINGWINDENERGYSOURCETHEELECTRICSPRINGISFOUNDTOBEEFFECTIVEINREGULATINGTHEMAINSVOLTAGEDESPITETHEFLUCTUATIONCAUSEDBYTHEINTERMITTENTNATUREOFWINDPOWERELECTRICAPPLIANCESWITHTHEELECTRICSPRINGSEMBEDDEDCANBETURNEDINTOANEWGENERATIONOFSMARTLOADS,WHICHHAVETHEIRPOWERDEMANDFOLLOWINGTHEPOWERGENERATIONPROFILEITISENVISAGEDTHATELECTRICSPRINGS,WHENDISTRIBUTEDOVERTHEPOWERGRID,WILLOFFERANEWFORMOFPOWERSYSTEMSTABILITYSOLUTIONTHATISINDEPENDENTOFINFORMATIONANDCOMMUNICATIONTECHNOLOGYINDEXTERMSDISTRIBUTEDPOWERSYSTEMS,SMARTLOADS,STABILITYIINTRODUCTIONAMECHANICALSPRINGISANELASTICDEVICETHATCANBEUSEDTOIPROVIDEMECHANICALSUPPORTIISTOREMECHANICALENERGYANDIIIDAMPMECHANICALOSCILLATIONS1–4WHENAMECHANICALSPRINGISCOMPRESSEDORSTRETCHED,THEFORCEITEXERTSISPROPORTIONALTOITSCHANGEINDISPLACEMENTPOTENTIALENERGYISSTOREDINTHEMECHANICALSPRINGWHENTHELENGTHOFTHESPRINGDEVIATESFROMITSNATURALLENGTHTHEPRINCIPLEOFTHEMECHANICALSPRINGSHASBEENDESCRIBEDBYROBERTHOOKEIN16785THEHOOKE’SLAWSTATESTHATTHEFORCEOFANIDEALMECHANICALSPRINGIS1WHEREISTHEFORCEVECTOR,ISTHESPRINGCONSTANTANDISTHEDISPLACEMENTVECTORTHEPOTENTIALENERGYSTOREDINTHEMECHANICALSPRINGIS2MANUSCRIPTRECEIVEDJANUARY05,2012REVISEDMARCH26,2012ACCEPTEDMAY13,2012DATEOFPUBLICATIONJUNE19,2012DATEOFCURRENTVERSIONAUGUST20,2012PAPERNOTSG000042012SYHUIISWITHTHEDEPARTMENTSOFELECTRICALRHUIIMPERIALACUKCKLEEANDFFWUAREWITHTHEDEPARTMENTOFELECTRICALFFWUEEEHKUHKTHISWORKWASSUPPORTEDBYTHEHKRESEARCHGRANTCOUNCILUNDERTHECOLLABORATIVERESEARCHFUNDHKU10/CRF/10,THEUNIVERSITYOFHONGKONGSEEDPROJECTS201111159239IISTOREELECTRICENERGYANDIIIDAMPELECTRICOSCILLATIONSANALOGOUSTOEQUATION1,THEBASICPHYSICALRELATIONSHIPOFTHEELECTRICSPRINGISEXPRESSEDAS34WHEREISTHEELECTRICCHARGESTOREDINACAPACITORWITHCAPACITANCE,ISTHEELECTRICPOTENTIALDIFFERENCEACROSSTHECAPACITOR,ANDISTHECURRENTFLOWINGINTOTHECAPACITOREQUATION3SHOWSTHATDYNAMICVOLTAGEREGULATIONIE,VOLTAGEBOOSTINGANDREDUCTIONFUNCTIONSOFTHEELECTRICSPRINGCANBECONTROLLEDBYTHECHARGESTOREDINTHECAPACITOREQUATION4INDICATESTHATTHECHARGECONTROLCANBEREALIZEDBYUSING19493053/3100?2012IEEE1554IEEETRANSACTIONSONSMARTGRID,VOL3,NO3,SEPTEMBER2012ELECTROMOTIVEFORCEEMFWITHCONTROLLABLEMAGNITUDEATTHEMAINSFREQUENCYCANBEGENERATEDACROSSTHECAPACITORASTHEELECTRICSPRINGVOLTAGETOENSURETHATTHISADJUSTABLEACVOLTAGESOURCEISLOSSLESSLIKEANIDEALMECHANICALSPRING,THEVECTORSOFANDMUSTBEPERPENDICULARTHECURRENTVECTORCANEITHERLEADTHEVOLTAGEVECTORTHEBY90CAPACITIVEMODEFORVOLTAGEBOOSTINGORLAGBY90INDUCTIVEMODEFORVOLTAGEREDUCTIONBPRACTICALIMPLEMENTATIONANDCHARACTERISTICSOFELECTRICSPRINGINELECTRICALENGINEERINGTERM,THISELECTRICSPRINGISASPECIALFORMOFREACTIVEPOWERCONTROLLERINTHELASTTWODECADES,POWERELECTRONICSBASEDREACTIVEPOWERCONTROLLERSRPCHAVEBEENDEVELOPEDINPOWERINDUSTRYTOCONTROLPOWERFLOWINHIGHVOLTAGETRANSMISSIONLINES8–17ANDFORDIMMINGLIGHTINGSYSTEMS18,19THEIRSIMPLIFIEDCONTROLSCHEMATICSAREILLUSTRATEDINFIG5AAND5B,RESPECTIVELYINTHESEAPPLICATIONS8–19OFSERIESRPC,THEINPUTOFTHERPCISALWAYSANDTHEOUTPUTISREGULATEDTOACONSTANTLEVELIE,ATRADITIONAL“OUTPUTFEEDBACKANDOUTPUTVOLTAGECONTROL”O(jiān)FISADOPTEDITISIMPORTANTTONOTETHATTHEELECTRICSPRINGDIFFERENTIATESITSELFFROMPREVIOUSUSEOFRPCWITHTHEADOPTIONOFAN“INPUTFEEDBACKANDINPUTVOLTAGECONTROL”ASSHOWNINFIG5CBYREGULATINGTHEINPUTVOLTAGEANDLETTINGTHEOUTPUTVOLTAGETOFLUCTUATEDYNAMICALLYIE,ANEWINPUTVOLTAGECONTROL,SUCHRPCWOULDIPROVIDETHEVOLTAGESUPPORTASANELECTRICSPRINGANDIISIMULTANEOUSLYSHAPETHELOADPOWERTOFOLLOWTHEAVAILABLEPOWERGENERATEDBYRENEWABLEENERGYSOURCESUCHSUBTLECHANGEINTHECONTROLSTRATEGYOFARPCFROMOUTPUTCONTROLTOINPUTCONTROLOFFERSNEWFEATURESANDFUNCTIONSFORPOWERANDVOLTAGECONTROL26THISNEWDISCOVERYPROVIDESTHEOPPORTUNITYTOAPPLYTHEELECTRICSPRINGFORBALANCINGTHEINSTANTANEOUSPOWEROFTHELOADDEMANDANDTHEGENERATEDPOWER20,21FORFUTURESMARTGRIDSWITHSUBSTANTIALRENEWABLEENERGYSOURCESIIIOPERATIONSANDLIMITATIONSOFELECTRICSPRINGSFORALOADTHATCANBEDIVIDEDINTOTWOPARTSANONCRITICALLOADANDACRITICALLOAD,ASINFIG4BYCONNECTINGANELECTRICSPRINGINSERIESWITHTHENONCRITICALLOAD,WECANENSURETHATTHEVOLTAGEANDPOWERATTHECRITICALLOADTOREMAINCONSTANTWHENTHELINEVOLTAGEFEEDINGTHELOADFLUCTUATESSUCHANARRANGEMENTOFLOADWILLBECALLED“SMARTLOAD”THEAIMOFTHEELECTRICSPRINGINTHEAPPLICATIONEXAMPLEOFFIG4ISTORESTORETOTHENOMINALVALUEOFTHEMAINSVOLTAGEATTHELOCATIONOFTHEDEVICEINSTALLATIONLETBETHEDYNAMICALLYCHANGINGINPUTPOWERTHEGENERALPOWERBALANCEEQUATIONFORTHESYSTEMINFIG4IS6WHEREANDARETHEROOTMEANSQUAREVALUESOFTHENONCRITICALLOADVOLTAGEANDTHEACMAINSVOLTAGE,RESPECTIVELYISTHEREALPARTOFTHATREPRESENTSTHERESISTIVEELEMENTISABCFIG5ASIMPLIFIEDCONTROLSCHEMATICOFSERIESREACTIVEPOWERCOMPENSATORFOROUTPUTVOLTAGESUPPORTINTRANSMISSIONREGULATED9–15BSIMPLIFIEDCONTROLSCHEMATICOFSERIESREACTIVEPOWERCOMPENSATORASACENTRALDIMMINGSYSTEMSREGULATED18,19CSIMPLIFIEDCONTROLSCHEMATICOFSERIESREACTIVEPOWERCOMPENSATORASANELECTRICSPRINGREGULATEDTHEIMPEDANCEOFTHE“NONCRITICAL”LOADANDISTHEIMPEDANCEOFTHE“CRITICAL”LOADTHEVECTOREQUATIONFORTHEELECTRICSPRINGIS7EQUATION6SHOWSTHAT,IFTHEMAINSVOLTAGEISREGULATEDBYTHEELECTRICSPRINGATTHENOMINALVALUE,THESECONDPOWERTERMSHOULDREMAINCONSTANTFORTHECRITICALLOADIFTHEPOWERGENERATEDCANNOTMEETTHEFULLPOWERFORBOTHAND,THEINPUTVOLTAGECONTROLOFTHEELECTRICSPRINGWILLGENERATEAVOLTAGEVECTORTOKEEPREGULATEDATFROM7,THEVOLTAGEVECTORACROSSWILLBEREDUCEDANDSOTHEPOWERCONSUMPTIONOFWILLALSOBEREDUCEDTHEREFORE,IFTHEELECTRICSPRINGPERFORMSWELL,FORTHECRITICALLOADSHOULDREMAINCONSTANTASEXPECTEDANDFORTHENONCRITICALLOADSHOULDFOLLOWTHEPOWERGENERATIONPROFILE
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 10
大?。?1.82(MB)
子文件數(shù):
-
簡介:中文中文6100字出處出處SHUYH,CHIKL,WUFFELECTRICSPRINGSANEWSMARTGRIDTECHNOLOGYJIEEETRANSACTIONSONSMARTGRID,2012,3315521561電力彈簧電力彈簧一種新型智能電網(wǎng)技術(shù)一種新型智能電網(wǎng)技術(shù)SHUYH,CHIKL,WUFF摘要17世紀(jì)60年代,英國物理學(xué)家ROBERTHOOKE描述了機械彈簧的科學(xué)原理。自此之后,虎克定律在電力學(xué)就沒有進(jìn)一步的發(fā)展。在本文,電力彈簧ES的發(fā)展彌補了這項技術(shù)鴻溝。本文闡述了它ES的原理、運行方式、限制以及物理實現(xiàn)。ES在穩(wěn)定未來有大量間斷新能源滲透下的電力系統(tǒng)巨大的前景。這個概念成功向由交流電源和風(fēng)能資源組成的實際系統(tǒng)供電。電力彈簧被證實可以有效地調(diào)節(jié)電壓,即使在間斷的自然風(fēng)能產(chǎn)生的波動的情況下。嵌有電力彈簧的電子裝置中可以轉(zhuǎn)變成一種新型時代的智能負(fù)荷,跟隨電力系統(tǒng)的發(fā)電情況??梢韵胂螅?dāng)智能電網(wǎng)中出現(xiàn)干擾,電力彈簧可以提供一種全新的電力系統(tǒng)穩(wěn)定性的解決方法,該方法不涉及信息和通信技術(shù)。關(guān)鍵詞分布式供能,智能負(fù)荷、穩(wěn)定性。1引言引言機械彈簧是一種有彈性的裝置可以被用來1)提供機械的支持;2儲存機械能;3)減少機械振動14當(dāng)機械彈簧被拉伸或壓縮,它釋放的能量與位移成比例。當(dāng)彈簧的長度偏離原始量,機械彈簧上儲存了勢能。1678年,虎克描述了機械彈簧的原理?;⒖硕申愂隽死硐霗C械彈簧的能量FKX(1)式中,F(xiàn)代表了力的矢量,K是彈簧系數(shù),X是位移矢量。勢能(PE)儲存在機械彈簧的公式是PE1/2KX2(2)機械彈簧在日常有著廣泛的應(yīng)用,比如床和汽車的懸浮彈簧。機械彈簧的使用往往以一種陣列的形式,這種結(jié)構(gòu)十分可靠,因為在有彈簧壞了的情況下,仍然有效支撐。雖然機械彈簧很重要,但在幾個世紀(jì),這個概念都沒有拓展到電力領(lǐng)域。本文論述了ES的物理實現(xiàn)。在虎克定律的基礎(chǔ)上,首次定義了ES的物理公式,并解釋了ES的運行方式、限制和物理實現(xiàn)。最后,首次成功的將ES應(yīng)用于平衡系統(tǒng)的電壓,該系統(tǒng)由動態(tài)變化的風(fēng)能供電。因此,在新能源滲透的未來圖1電力彈簧與機械彈簧的類比電力彈簧的中間位置就是在設(shè)計時需維持的參考電壓水平。電力彈簧和負(fù)荷Z1的在交流電源的一系列布置被用來將電源電壓VS維持在參考電壓水平VS_REF(220V),這就是電力彈簧的中間位置。與機械彈簧在力的作用下出現(xiàn)位置偏移類似,電力彈簧可以提供電壓提升與降低作用(VSVOVA),原理圖如圖1所示。電力彈簧電壓VA產(chǎn)生的原理是動態(tài)控制電容器C和電流源IC之間(圖2A)的電勢差,整體采用閉環(huán)控制(圖2C)。式(3)中電荷控制的方法提供了一種產(chǎn)生電壓的方法,可以在同一位置提升和降低系統(tǒng)中的電源電壓。這種控制使電力彈簧對電壓的動態(tài)支持更加靈活。圖2(A)電動彈簧以電容器形式由可控制的電流源供電。B與輸入電壓控制電動彈簧的示意圖。C一個電動彈簧與的耗散負(fù)載串聯(lián)實現(xiàn)儲能,電壓支持和阻尼。
下載積分: 10 賞幣
上傳時間:2024-03-15
頁數(shù): 15
大?。?0.65(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?1.77(MB)
子文件數(shù):