-
簡介:橋梁工程施工方案實例1、施工方法鉆孔樁采取平地筑島,埋設(shè)護筒,泥漿護壁,循環(huán)鉆成孔(沖擊鉆配合),成孔后下鋼筋籠,利用導管灌注水下砼。2、施工工藝詳見鉆孔樁施工工藝框圖。3、施工要點(1)材料要求水泥、細集料、粗集料、水和附加劑、砼拌和、輸送、養(yǎng)護符合結(jié)構(gòu)砼工程規(guī)范的規(guī)定。(2)導管灌注水下砼還應(yīng)符合下列要求①水泥標號不低于425,初凝時間不低于25H。②粗骨料宜選優(yōu)質(zhì)級配良好的碎石③骨料粒徑不得大于導管1/8和鋼筋最小凈距的1/4,同時不得大于40MM。④砂子選用級配良好的中砂。⑤坍落度宜為180220MM。⑥水灰比在0506,水泥用量不少于350KG/M3。⑦鋼筋應(yīng)符合技術(shù)規(guī)范要求。(3)測量定位首先要平整場地,清除雜物,換除地表層軟土,夯壓密實。然后采用全站儀,根據(jù)樁位坐標放出鉆孔樁的中心位置,并設(shè)立護樁,對護樁采取水泥砂漿加固,設(shè)立明顯標志。(4)埋設(shè)鋼護筒鋼護筒壁厚≥3MM,高度為3M,在護筒上、下端和中部的外側(cè)各焊一道加勁助,護筒內(nèi)徑比樁徑大30CM,護筒頂設(shè)出漿口,人工挖掘埋設(shè)法設(shè)置鋼護筒,鋼護筒的位置準確,不傾斜。埋設(shè)時,護筒中心軸線對正測量標定的樁中心,偏差不大于50厘米,傾斜度的偏差不大于1。護筒頂面高出地面05米,護筒埋深25米,護筒周圍10M范圍內(nèi)采用粘土回填,夯實至護筒底05M以下,在護筒頂部焊吊耳。鉆進過程中經(jīng)常檢查護筒是否發(fā)生偏移和下沉,并及時處理。(5)鉆機就位鉆機下部鋪墊枕木,鉆錐中心軸線對正樁位中心,對操作人員進行開鉆前教育。機械移位由汽車吊配合。(6)泥漿制備拌制泥漿粘土嚴格選取,控制好含砂率,試驗測試確定泥漿性能,相對密度106110,失水率1520毫升/30分鐘,泥皮厚度小于3毫米/30MIN。粘度1828S。如不能滿足要求,加膨潤土重新試驗確定。(7)鉆孔樁的鉆進分班連續(xù)作業(yè),護筒內(nèi)的泥漿頂面,始終保持高出筒外水位或地下水位1015M以上。施工中經(jīng)常測定泥漿性能,保證護壁效果。并做好詳細的鉆孔記錄,經(jīng)常注意土層的變化,查看地質(zhì)資料。每進尺3米測鉆桿的傾斜度,以便及時進行調(diào)整。鉆孔樁時3、施工要點承臺基坑開挖采用挖掘機配合人工開挖,根據(jù)地下水位情況進行基坑排水,檢測基坑底標高,進行基底處理,測量放樣。破樁頭按設(shè)計圖紙多余的鉆孔樁頭破掉,將鋼筋頭彎成喇叭口,并綁扎好,測量放樣立系梁模板、綁系梁鋼筋,經(jīng)監(jiān)理工程師檢查后再進砼的灌注。立墩柱模板之前應(yīng)用全站儀進行精確的定位并彈出十字線,對系梁的標高認真的測量。墩柱的鋼筋綁扎搭接應(yīng)按設(shè)計要求進行,模板和鋼筋籠之間要墊好墊塊,保證鋼筋的保護層厚度。立模板采用吊車和人力配合將整體鋼模安裝就位,外搭腳手架固定模板和蓋梁模板的支撐,經(jīng)監(jiān)理工程師檢查合格后開始灌注砼至蓋梁頂部。當砼強度達到75拆除底模,砼灌注完后12小時以內(nèi)及時進行濕潤法養(yǎng)護,養(yǎng)護時間不少于7天。(三)空心板梁預制1、預制場施工概述預制場布置4條張拉臺座,并配備一組40T龍門吊和一組10T龍門吊,進行模板的拼裝、砼的澆筑和移梁等工作,并設(shè)相應(yīng)的存梁區(qū)。同時設(shè)小型預制構(gòu)件區(qū)預制涵洞蓋板、涵管及其它小型預制構(gòu)件。預制場平面布置詳見預制場平面布置示意圖。施工前將現(xiàn)場整平夯實,并澆筑15CM厚C20級混凝土,以方便地材的運輸和儲存。張拉臺座為槽式臺座,采用半埋入式??v梁為C35級鋼筋砼,縱梁兩端各鑲嵌一塊2CM厚鋼板,防止縱梁端部被破壞;固定橫梁和移動橫梁均由工字鋼和加固肋板焊接而成;梁片底模全部采用固定式底模,即在兩縱梁之間用C25砼作為底模基礎(chǔ),兩側(cè)面鑲嵌角鋼,并貼以橡膠條用以止?jié){,砼表面鋪蓋鋼板,用以減小梁底磨擦。與制梁臺座相對應(yīng)的位置設(shè)存梁場,存梁場亦需整平夯實且需排水順暢,根據(jù)梁板長度和梁板支撐點的位置布設(shè)存梁臺座,存梁臺座采用C15砼,斷面為2525CM,且需注意存梁臺座不得產(chǎn)生不均勻沉降。為滿足本工程砼施工質(zhì)量,本合同段所需砼均由預制場內(nèi)的砼攪拌站集中供應(yīng),攪拌站規(guī)模為50M3/H。2、勞動力安排預制施工安排120人負責預制場施工,分成三個工班。第一工班負責鋼筋加工及綁扎;第二工班負責模板加工及安裝、第三工班負責砼澆注及養(yǎng)生。3、先張法預應(yīng)力砼空心板梁的預制先張法預應(yīng)力砼空心板的外模采用定型鋼模,內(nèi)模用充氣芯模。張拉方法采取一端固定,一端整體張拉的方法,砼由拌和站集中供應(yīng),插入式振搗器振搗。(1)施工準備工作平整壓實場地,修筑張拉臺座,張拉設(shè)備檢查標定,作鋼絞線檢測,制作鋼模板,定購芯模,為監(jiān)理工程師提供實施性張拉施工方案等。(2)模板的制作、安裝與拆除①模板的制作、安裝與拆除A、梁片外模采用定型組合鋼模,內(nèi)模采用充氣芯模。模板各部位尺寸準確,表面光滑,無凸凹不平現(xiàn)象。為防止充氣芯模在澆注砼時整體上浮,采用頂部壓重法予以固定,嚴格控制芯模及鋼筋骨架的位置,使其偏差符合設(shè)計要求。鋼筋保護層采用墊塊來保證。B、模板的安裝與鋼筋的綁扎結(jié)合進行,鋼筋骨架在底模上綁扎完畢后,支邊模和端
下載積分: 6 賞幣
上傳時間:2024-03-12
頁數(shù): 17
大小: 0.58(MB)
子文件數(shù):
-
簡介:葛洲壩一公司蘇州中環(huán)快速路吳中區(qū)段西線葛洲壩一公司蘇州中環(huán)快速路吳中區(qū)段西線1標工程標工程GCASZX113009GCASZX1130091目錄1、概述、概述111首件工程施工概況首件工程施工概況112首件工程施工時間首件工程施工時間12、樁基首件工程施工過程回顧、樁基首件工程施工過程回顧121首件工程施工準備情況首件工程施工準備情況122首件工程現(xiàn)場施工情況首件工程現(xiàn)場施工情況3221路面破除、泥漿池開挖及防護3222樁位放樣、護樁設(shè)置、護筒埋設(shè)3223鉆機就位4224鉆孔4225檢孔及終孔6226一清6227鋼筋籠加工制作6228鋼筋籠安放7229聲測管安裝82210導管安放82211二次清孔92212樁基水下混凝土灌注103、首件工程施工總結(jié)及后續(xù)施工控制要點、首件工程施工總結(jié)及后續(xù)施工控制要點1231施工準備施工準備1232樁基施工樁基施工13321路面破除、泥漿池、沉淀池開挖及防護13322樁位放樣、護樁設(shè)置、護筒埋設(shè)13323鉆機就位13324鉆孔14325檢孔及終孔15326一清16327鋼筋籠加工制作16328鋼筋籠安放17329聲測管安裝173210導管安放173211二次清孔183212樁基水下混凝土灌注184、存在的問題及改進措施、存在的問題及改進措施1941施工管理施工管理1942質(zhì)量控制質(zhì)量控制1943安全文明施工安全文明施工20葛洲壩一公司蘇州中環(huán)快速路吳中區(qū)段西線葛洲壩一公司蘇州中環(huán)快速路吳中區(qū)段西線1標工程標工程GCASZX113009GCASZX11300924月1日,樁基人員及設(shè)備進場后,立即組織進行了儲漿池、臨電及臨水系統(tǒng)、鋼筋加工廠等臨建設(shè)施建設(shè)。4月2日,樁基鋼筋、聲測管等原材料進場,并邀請了試驗監(jiān)理工程現(xiàn)場見證進行了原材料取樣及送檢,4月4日,材料檢測報告合格。4月7日,項目部組織召開了樁基施工技術(shù)交底及安全技術(shù)交底會。人員設(shè)備進場人員設(shè)備進場臨建設(shè)施建設(shè)臨建設(shè)施建設(shè)原材料進場及取樣原材料進場及取樣
下載積分: 6 賞幣
上傳時間:2024-03-15
頁數(shù): 22
大?。?4.76(MB)
子文件數(shù):
-
簡介:貴龍經(jīng)濟帶貴龍大道縱線道路貴龍經(jīng)濟帶貴龍大道縱線道路Ⅰ標段工程Ⅰ標段工程(橋梁工程)(橋梁工程)監(jiān)理質(zhì)量評估報告報告編制證書號00291654審核(總監(jiān)理工程師)證書號00253700批準(單位技術(shù)負責人)編制單位貴州國龍項目管理咨詢有限公司日期2013年1月1日主要完成工程量Φ1500人工挖孔灌注樁16根、橋臺2座、臺帽2座,預制預應(yīng)力箱梁5塊,橋面鋪裝8CMC50混凝土防水層10CM瀝青混凝土。本單位工程于2012年3月至2012年12月完成。三、評估依據(jù)三、評估依據(jù)1工程建設(shè)監(jiān)理合同2工程施工合同3工程設(shè)計施工圖4城市橋梁工程施工與質(zhì)量驗收規(guī)范CJJ220085混凝土結(jié)構(gòu)工程施工質(zhì)量驗收規(guī)范GB5020420026工程測量規(guī)范GB5002620077其他國家及地方現(xiàn)行有關(guān)質(zhì)量驗收規(guī)范、標準等法律、法規(guī)、規(guī)定二、監(jiān)理工作情況二、監(jiān)理工作情況1、項目監(jiān)理組根據(jù)監(jiān)理合同的要求及現(xiàn)場工程實際情況,配備總監(jiān)、總監(jiān)代表、專業(yè)監(jiān)理工程師、監(jiān)理員及安全監(jiān)理員。在現(xiàn)場根據(jù)ISO9002貫標要求,建立以總監(jiān)為中心的質(zhì)量保證體系,制定崗位責任制,使工程受控有序地進行。2、根據(jù)強制性條文、設(shè)計和規(guī)范規(guī)程要求,在整個施工過程中,監(jiān)理進行了全面的現(xiàn)場旁站、巡視和監(jiān)督工作。①監(jiān)理對施工方的施工組織設(shè)計進行了審查,并提出自己的意見和想法,力爭使施工組織設(shè)計符合工地實際情況。同時,根據(jù)現(xiàn)場情況和施工組織設(shè)計,編制出相應(yīng)的監(jiān)理細則。對施工方上報的
下載積分: 6 賞幣
上傳時間:2024-03-17
頁數(shù): 7
大?。?0.03(MB)
子文件數(shù):
-
簡介:目錄第一章第一章總論111項目概況112可行性研究報告編制依據(jù)及范圍413編制原則514主要技術(shù)經(jīng)濟指標615研究結(jié)論與建議6第二章第二章項目建設(shè)背景及必要性項目建設(shè)背景及必要性921項目建設(shè)背景922項目建設(shè)必要性11第三章第三章建設(shè)條件、技術(shù)標準與建設(shè)規(guī)模建設(shè)條件、技術(shù)標準與建設(shè)規(guī)模141431建設(shè)條件1432主要建筑材料來源、供應(yīng)情況及施工條件1633技術(shù)標準1834建設(shè)規(guī)模19第四章第四章道路及配套工程道路及配套工程191941設(shè)計總則1942道路工程2042道路配套排水管道2443照明工程2944電信工程3145管道(線)綜合3146交通設(shè)施3292招標范圍5193招標組織形式5194招標方式5295招標情況5296招標信息發(fā)布5297評標5398授予承包人施工合同53第十章第十章工程實施方案工程實施方案5454101工程實施條件54102建設(shè)期安排55103工程管理的實施方案55第十一章第十一章投資估算與資金籌措投資估算與資金籌措5757111投資估算57第十二章第十二章工程效益評價工程效益評價6262121工程效益62122社會效益評價62第十三章第十三章結(jié)論與建議結(jié)論與建議6464131研究結(jié)論64132建議64
下載積分: 9 賞幣
上傳時間:2024-03-16
頁數(shù): 67
大小: 0.46(MB)
子文件數(shù):
-
簡介:CONCRETEBRIDGESCONCRETEISTHEMOSTUSEDCONSTRUCTIONMATERIALFORBRIDGESINTHEUNITEDSTATES,ANDINDEEDINTHEWORLDTHEAPPLICATIONOFPRESTRESSINGTOBRIDGESHASGROWNRAPIDLYANDSTEADILY,BEGINNINGIN1949WITHHIGHSTRENGTHSTEELWIRESINTHEWALNUTLANEBRIDGEINPHILADELPHIA,PENNSYLVANIAACCORDINGTOTHEFEDERALHIGHWAYADMINISTRATION’S1994NATIONALBRIDGEINVENTORYDATA,FROM1950TOTHEEARLY1990S,PRESTRESSEDCONCRETEBRIDGESHAVEGONEFROMBEINGVIRTUALLYNONEXISTENTTOREPRESENTINGOVER50PERCENTOFALLBRIDGESBUILTINTHEUNITEDSTATESPRESTRESSINGHASALSOPLAYEDANIMPORTANTROLEINEXTENDINGTHESPANCAPABILITYOFCONCRETEBRIDGESBYTHELATE1990S,SPLICEDGIRDERSPANSREACHEDARECORD100M330FTCONSTRUCTIONOFSEGMENTALCONCRETEBRIDGESBEGANINTHEUNITEDSTATESIN1974CURRETLY,CLOSETO200SEGMENTALCONCRETEBRIDGESHAVEBEENBUILTORAREUNDERCONSTRUCTION,WITHSPANSUPTO240M800FTLATEINTHE1970S,CABLESTAYEDCONSTRUCTIONRAISEDTHEBARFORCONCRETEBRIDGESBY1982,THESUNSHINESKYWAYBRIDGEINTAMPA,FLORIDA,HADSETANEWRECORDFORCONCRETEBRIDGES,WITHAMAINSPANOF365M1,200FTTHENEXTYEAR,THEDAMESPOINTBRIDGEINJACKSONVILLE,FLORIDA,EXTENDEDTHERECORDTO400M1,300FTHIGHPERFORMANCECONCRETECOMPRESSIVESTRENGTHFORMANYYEARSTHEDESIGNOFPRECASTPRESTRESSEDCONCRETEGIRDERSWASBASEDONCONCRETECOMPRESSIVESTRENGTHSOF34TO41MPA5,000TO6,000PSITHISSTRENGTHLEVELSERVEDTHEINDUSTRYWELLANDPROVIDEDTHEBASISFORESTABLISHINGTHEPRESTRESSEDCONCRETEBRIDGEINDUSTRYINTHEUNITEDSTATESINTHE1990STHEINDUSTRYBEGANTOUTILIZEHIGHERCONCRETECOMPRESSIVESTRENGTHSINDESIGN,ANDATTHESTARTOFTHENEWMILLENNIUMTHEINDUSTRYISPOISEDTOACCEPTTHEUSEOFCONCRETECOMPRESSIVESTRENGTHSUPTO70MPA10,000PSIFORTHEFUTURE,THEINDUSTRYNEEDSTOSEEKWAYSTOEFFECTIVELYUTILIZEEVENHIGHERCONCRETECOMPRESSIVESTRENGTHSTHEREADYMIXEDCONCRETEINDUSTRYHASBEENPRODUCINGCONCRETESWITHCOMPRESSIVESTRENGTHSINEXCESSOF70MPAFOROVER20YEARSSEVERALDEMONSTRATIONPROJECTSHAVEILLUSTRATEDTHATSTRENGTHSABOVE70MPACANBEACHIEVEDFORPRESTRESSEDCONCRETEGIRDERSBARRIERSNEEDTOBEREMOVEDTOALLOWTHEGREATERUSEOFTHESEMATERIALSATTHESAMETIME,OWNERS,DESIGNERS,CONTRACTORS,ANDFABRICATORSNEEDTOBEMORERECEPTIVETOTHEUSEOFHIGHERCOMPRESSIVESTRENGTHCONCRETESDURABILITYHIGHPERFORMANCECONCRETEHPCCANBESPECIFIEDASHIGHCOMPRESSIVESTRENGTHEG,INPRESTRESSEDGIRDERSORASCONVENTIONALCOMPRESSIVESTRENGTHWITHIMPROVEDDURABILITYEG,INCASTINPLACEBRIDGEDECKSANDSUBSTRUCTURESTHEREISANEEDTODEVELOPABETTERUNDERSTANDINGOFALLTHEPARAMETERSTHATAFFECTDURABILITY,SUCHASCAPABILITYONTHEBASISOFTHEFHWASTUDY,PCIDEVELOPEDTHEPCIBULBTEESTANDARD,WHICHWASENDORSEDBYBRIDGEENGINEERSATTHE1987AASHTOANNUALMEETINGSUBSEQUENTLY,THEPCIBULBTEECROSSSECTIONWASADOPTEDINSEVERALSTATESINADDITION,SIMILARCROSSSECTIONSWEREDEVELOPEDANDADOPTEDINFLORIDA,NEBRASKA,ANDTHENEWENGLANDSTATESTHESECROSSSECTIONSAREALSOCOSTEFFECTIVEWITHHIGHSTRENGTHCONCRETESFORSPANLENGTHSUPTOABOUT60M200FTSPLICEDGIRDERSSPLICEDCONCRETEIGIRDERBRIDGESARECOSTEFFECTIVEFORASPANRANGEOF35TO90M120TO300FTOTHERSHAPESBESIDESIGIRDERSINCLUDEU,T,ANDRECTANGULARGIRDERS,ALTHOUGHTHEDOMINANTSHAPEINAPPLICATIONSTODATEHASBEENTHEIGIRDER,PRIMARILYBECAUSEOFITSRELATIVELYLOWCOSTAFEATUREOFSPLICEDBRIDGESISTHEFLEXIBILITYTHEYPROVIDEINSELECTIONOFSPANLENGTH,NUMBERANDLOCATIONSOFPIERS,SEGMENTLENGTHS,ANDSPLICELOCATIONSSPLICEDGIRDERSHAVETHEABILITYTOADAPTTOCURVEDSUPERSTRUCTUREALIGNMENTSBYUTILIZINGSHORTSEGMENTLENGTHSANDACCOMMODATINGTHECHANGEINDIRECTIONINTHECASTINPLACEJOINTSCONTINUITYINSPLICEDGIRDERBRIDGESCANBEACHIEVEDTHROUGHFULLLENGTHPOSTTENSIONING,CONVENTIONALREINFORCEMENTINTHEDECK,HIGHSTRENGTHTHREADEDBARSPLICING,ORPRETENSIONEDSTRANDSPLICING,ALTHOUGHTHEGREATMAJORITYOFAPPLICATIONSUTILIZEFULLLENGTHPOSTTENSIONINGTHEAVAILABILITYOFCONCRETECOMPRESSIVESTRENGTHSHIGHERTHANTHETRADITIONAL34MPA5,000PSISIGNIFICANTLYIMPROVESTHEECONOMYOFSPLICEDGIRDERDESIGNS,INWHICHHIGHFLEXURALANDSHEARSTRESSESARECONCENTRATEDNEARTHEPIERSDEVELOPMENTOFSTANDARDIZEDHAUNCHEDGIRDERPIERSEGMENTSISNEEDEDFOREFFICIENCYINNEGATIVEMOMENTZONESCURRENTLY,THESEGMENTSHAPESVARYFROMAGRADUALLYTHICKENINGBOTTOMFLANGETOACURVEDHAUNCHWITHCONSTANTSIZEDBOTTOMFLANGEANDVARIABLEWEBDEPTHSEGMENTALBRIDGESSEGMENTALCONCRETEBRIDGESHAVEBECOMEANESTABLISHEDTYPEOFCONSTRUCTIONFORHIGHWAYANDTRANSITPROJECTSONCONSTRAINEDSITESTYPICALAPPLICATIONSINCLUDETRANSITSYSTEMSOVEREXISTINGURBANSTREETSANDHIGHWAYS,RECONSTRUCTIONOFEXISTINGINTERCHANGESANDBRIDGESUNDERTRAFFIC,ORPROJECTSTHATCROSSENVIRONMENTALLYSENSITIVESITESINADDITION,SEGMENTALCONSTRUCTIONHASBEENPROVEDTOBEAPPROPRIATEFORLARGESCALE,REPETITIVEBRIDGESSUCHASLONGWATERWAYCROSSINGSORURBANFREEWAYVIADUCTSORWHERETHEAESTHETICSOFTHEPROJECTAREPARTICULARLYIMPORTANTCURRENTDEVELOPMENTSSUGGESTTHATSEGMENTALCONSTRUCTIONWILLBEUSEDONALARGERNUMBEROFPROJECTSINTHEFUTURESTANDARDCROSSSECTIONSHAVEBEENDEVELOPEDTOALLOWFORWIDERAPPLICATIONOFTHISCONSTRUCTIONMETHODTOSMALLERSCALEPROJECTSSURVEYSOFEXISTINGSEGMENTALBRIDGESHAVEDEMONSTRATEDTHEDURABILITYOFTHISSTRUCTURETYPEANDSUGGESTTHATADDITIONALINCREASESINDESIGNLIFEAREPOSSIBLEWITHTHEUSEOFHPCSEGMENTALBRIDGESWITHCONCRETESTRENGTHSOF55MPA8,000PSIORMOREHAVEBEENCONSTRUCTEDOVERTHEPAST5YEARSERECTIONWITHOVERHEADEQUIPMENTHASEXTENDEDAPPLICATIONSTOMORECONGESTEDURBANAREASUSEOFPRESTRESSEDCOMPOSITESTEELANDCONCRETEINBRIDGESREDUCESTHEDEADWEIGHTOFTHESUPERSTRUCTUREANDOFFERSINCREASEDSPANLENGTHSLOADRATINGOFEXISTINGBRIDGES
下載積分: 6 賞幣
上傳時間:2024-03-17
頁數(shù): 13
大?。?0.06(MB)
子文件數(shù):
-
簡介:書??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
下載積分: 9 賞幣
上傳時間:2024-03-13
頁數(shù): 352
大?。?17.03(MB)
子文件數(shù):
-
簡介:中文中文4300字出處出處NOURIG,AHMADIZINFLUENCEOFSKEWANGLEONCONTINUOUSCOMPOSITEGIRDERBRIDGEJJOURNALOFBRIDGEENGINEERING,2012,174617623斜交角度對連續(xù)組合梁橋的影響GHOLAMREZANOURI,PHD1ANDZAHEDAHMADI,MSC2摘要在工程界傾斜橋梁的設(shè)計變得越來越常見。在本文中傾斜角度對連續(xù)梁橋的影響采用了有限元法進行分析。取七十二種不同矢跨比(N?1,155,182)、不同傾斜角度(060°),不同橫隔梁的兩跨橋梁進行分析。所有橋型都受AASHTOHS2044裝載。偏斜橋梁的結(jié)果與參考橋梁以及AASHTO標準規(guī)范和AASHTOLRFD規(guī)范進行比較。結(jié)果表明,隨著傾斜角度的增加內(nèi)部和外部的梁支撐時間迅速下降。當傾角小于20°時支撐時間下降約10,當傾角為45°時達到33。剪切力在外部隨傾斜角度的增加而增加,在內(nèi)部梁隨傾斜角度的增加而減少。對于外梁,當傾斜角達到45°時剪切力達到13倍。AASHTO標準規(guī)范在傾斜角為30°時和N?處高估了20、在傾斜角為45°高估了50。AASHTO標準LRFD規(guī)范高估了縱向彎矩和剪力,在傾斜角為20°時高估達到12而在傾斜角為45°高估達到45。結(jié)果表明,橫隔板垂直于所述橋的縱向桁材對負荷分布的是最佳安排。比較所述傾斜甲板與有限元分析的簡化關(guān)系的結(jié)果表明,該方程的結(jié)果是保守的連續(xù)傾斜的橋梁。值得注意的是,該結(jié)果屬于那些橋與特定的配置,其結(jié)果可能會改變,如果假定的條件而有所不同,雖然傾向應(yīng)該是相似的。DOI101061/(ASCE)BE194355920000273。?土木工程師2012美國社會。CE數(shù)據(jù)庫主題詞連續(xù)梁橋復合材料橋,梁橋,斜交橋。關(guān)鍵詞斜角度連續(xù)橋分配系數(shù)復合材料橋梁。介紹斜橋在發(fā)達地區(qū)的對齊問題比經(jīng)濟問題更加能影響橋梁的設(shè)計。傾斜的橋梁在多山的地區(qū)也相當?shù)钠毡椋匦翁卣骺赡軟Q定了橋梁上部結(jié)構(gòu)不能垂直于橋臺和橋墩。在非斜橋梁中,負載路徑是直朝著跨度方向的。在傾斜橋中,不是這種情況。對于實心斜橋,負載往往需要一個快捷方式到橋的鈍角角。在由縱桁橋面支承,這種情況也會發(fā)生,盡管它不是較顯著。這種變化在高角度傾斜的橋梁荷載路徑的方向帶來了以下特點在底板有顯著扭矩,縱向的扭矩減少,橫向的扭矩增加,反應(yīng)力和負彎矩位于鈍角拐角處,小反應(yīng),增加反作用力在尖角的可能性。斜交橋的這些特點使它們的分析和設(shè)計比非斜橋梁更加復雜。在過去,歪斜橋的分析、設(shè)計和構(gòu)造不管斜交角的大小和直橋相同。許多設(shè)計因素也以同樣的方式被處理。這方面的一個例子是,活載荷分布系數(shù)(LLDF),這在設(shè)計規(guī)范使設(shè)計簡單,提供評估一個橋的簡單且快速的方法。該LLDF是參照橋的幾何形狀,部件的相對剛度和負荷的性質(zhì)而形成的函數(shù)。AASHTO標準(2003年)的標準規(guī)范只根據(jù)主梁間距為橋梁的主梁提供設(shè)計參數(shù)。此參數(shù)不考慮傾斜角度和橋梁連續(xù)性的效果。安大略省公路橋梁設(shè)計規(guī)范(1992OMTC)認為橋梁縱向和橫向剛度不應(yīng)該只考慮梁間距。所以,該方法0046立方米。我們用L808毫米的X型中間隔膜與頂部和底部線橫向框。對于所有的橋梁,為30兆帕的抗壓強度25厘米厚的混凝土橋面板由鋼絲網(wǎng)的400平方毫米/平方米面積用于并在頂部和底部均增強(EBEIDO和肯尼迪1996年A,B)所示。圖。圖1示出的有限元模型(FEM)的橫截面和橫隔板的兩種布置。有限元分析有限元分析許多變型已被用于在文獻中,以制定梁板坯模型。海斯等人。(1986)開發(fā)了使用四邊形殼單元的主梁橋面和空間框架元素的模型。這種類型的模型類似,只是該元件被簡單地連接在重心與不需要的剛性連桿偏心束模型。一個真正的偏心束的方法,提出了由IMBSEN和納特(1978)。該模型采用殼單元和梁單元連接由剛性連接到代表甲板和大梁,分別。BROCKENBROUGH(1986)中使用的詳細的光束的方法和分割的光束分成三部分。每個凸緣被建模為一個梁單元和網(wǎng)絡(luò)建模為一個殼單元。通過剛性連接到每個元件的質(zhì)心節(jié)點連接的板坯利用殼單元。固體甲板的做法,提出了由TARHINI和FREDERICK(1992),誰使用的實體單元的甲板和殼單元的大梁。偏心梁模型被確定為最經(jīng)濟的模式,同時還準確地預測梁的行為。我們使用一般的有限元分析程序,SAP2000(CSI2000),對于三維有限元。采用四節(jié)點三維彈性殼單元具有六個自由度中的每個節(jié)點的混凝土板進行建模。縱向鋼梁采用兩個節(jié)點的三維彈性梁單元具有六個自由度中的每個節(jié)點建模。殼和梁單元由剛性連接單元連接起來。這些元素被用來通過連接甲板元素與梁單元和殼單元的節(jié)點上甲板和主梁之間的復合作用進行建模。橫隔板跨框架采用梁單元模擬。梁和隔膜元件之間的連接是固定的。簡單支撐在橋梁的兩端分別用邊界約束在其中平移的位移受到限制,除了在縱向方向上建模,并且沒有旋轉(zhuǎn)約束。結(jié)果表明,簡支邊界條件可提供更均勻的結(jié)果(EOM和2001年諾瓦克)。此外,中間支撐墩采用邊界約束,所有的平移位移受到限制建模。加載和有限元分析結(jié)果加載和有限元分析結(jié)果標準的卡車HS2044是按照AASHTO標準規(guī)范使用。用于裝載SAP2000(CSI2000)的移動負載試驗。為了驗證有限元法在?1點55分和30°傾斜角度下N的情況,該模型擴展到他的整個一樣的EBEIDO和肯尼迪(1996年A,B)模型。對于內(nèi)部梁的彎矩分布因子的比較顯示出小于25%的差異。
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 8
大小: 0.44(MB)
子文件數(shù):
-
簡介:中文中文5500字出處出處HAMMERVOLDJ,REENAASM,BRATTEB?HENVIRONMENTALLIFECYCLEASSESSMENTOFBRIDGESJJOURNALOFBRIDGEENGINEERING,2013,182153161橋梁環(huán)境生命周期評估JOHANNEHAMMERVOLD1MARTEREENAAS2ANDHELGEBRATTEB?3摘要本文進行了挪威三個案例橋(LCA)的環(huán)境生命周期評價的研究,并加以詳細比較。涵蓋了橋梁設(shè)計較廣的規(guī)模,分析處理了鋼箱梁懸索橋,混凝土箱梁橋,和一個木制拱橋。這項研究提出使用標準化的橋梁分類,分析公路橋梁的第一個生命周期。生命周期評價包括多種污染物,詳細的生命周期材料和高消耗的能源水平。并與橋梁早期生命周期評價一起使用作為基準,對橋梁進行生命周期評價作出常規(guī)性的建議。研究表明,主要承載系統(tǒng)(即,橋梁上部結(jié)構(gòu))和橋墩需要大量的材料,這些材料是十分重要的并且數(shù)量有限,并且環(huán)境影響大都是由此造成的。施工階段占比較少的影響,使用階段影響更顯著,主要是因為瀝青要重鋪。建筑設(shè)備和人員使用在生命周期的各個階段都是次要的,因為在此過程中使用的是模板,膠粘劑,爆破和報廢的焚燒木頭。在這項研究中所作出的最重要的環(huán)境假設(shè)是全球變暖,非生物耗竭和酸雨問題。三種橋的比較結(jié)果表明,混凝土橋的替代性能在環(huán)境總體上最佳,但是當它涉及到全球變暖上時,木橋是比其他兩個更好。研究結(jié)果支持這一想法,從準確公正的角度上看,在橋梁設(shè)計過程的不同階段,它可能是有益于環(huán)境設(shè)計方案的決定性因素,這一因素正在被橋梁工程界愈加重視。CE數(shù)據(jù)庫主題詞橋梁;建筑;生命周期;環(huán)境問題;決策關(guān)鍵詞橋梁建設(shè);橋梁管理;生命周期評價;環(huán)境影響;決策支持緒言芬蘭,瑞典和挪威的研究合作的ETSI項目(SALOKANGAS2010),于2006年推出,丹麥也在2009年推出了該項目。該項目旨在優(yōu)化橋周期,包括經(jīng)濟,環(huán)境和美學問題,包含橋的整個生命周期。該挪威集團一直致力于環(huán)保問題并制定了橋梁環(huán)境生命周期評估工具(生命周期評價),稱為橋的生命周期評價(BRATTEB?等,2009)。這工具可用于詳細評價橋梁的生命周期,揭示了何種材料和零件造成了什么樣的影響和在哪個生命周期階段彌補這些影響混凝土和鋼筋混凝土之間的差異是微不足道的。貫穿整個使用期的三種材料的排放量幾乎是相同的,并且在這個階段的大多數(shù)排放量都涉及到橋梁的重鋪路面?;敉咛睾秃嗟吕锟松?998)提出了兩個橋梁的備選方案,對鋼架橋和鋼鋼筋混凝土橋梁進行環(huán)境評估。對這項研究中三組數(shù)據(jù)的環(huán)境影響進行了量化比較,即有毒化學物質(zhì)排放量,有害廢物的產(chǎn)生值,常規(guī)空氣污染物排放之間的比較。要求混凝土的設(shè)計使用要有最低的環(huán)境影響(計算對鋼架橋的環(huán)境影響中,它只占到1060%)。環(huán)境影響對整個橋的使用壽命而言是非常重要的,如二氧化硫,氮氧化物,甲烷和VOC,在給橋涂保護膜時的排放量比梁的生產(chǎn)過程中的排放量要更高。在伊藤和北川(2003),修改后的生命周期法早已用于評估和比較兩種鋼橋梁,包括常規(guī)的梁橋和最小化的梁橋。在維護階段中比較橋的二氧化碳的排放量和成本,最小化的梁橋能降低二氧化碳排放和總成本。比較可替代的不同橋梁組成構(gòu)件對KEOLEIAN等地的兩種類型的甲板系統(tǒng)進行了比較(2005)一個鋼筋混凝土橋面方案與一個傳統(tǒng)的鋼制伸縮器及鋼筋混凝土混合使用方案,即工程水泥基復合材料(ECCS)的鏈接板設(shè)計??諝庵械母鞣N污染物(CO2,CH4,CO,PM10,非甲烷碳氫化合物,氮氧化物,硫氧化物)和水(生物需氧量,NH3,PO432,油,懸浮物,并溶解物質(zhì))都被考慮到了。分析表明,在ECC甲板產(chǎn)生的所有污染物顯著降低了對環(huán)境的影響。本文中斯蒂爾等人(2003)提出了適用于各種橋梁的方法。該文通過訴諸案例研究,提出了一些關(guān)于整個橋梁的生命周期如何減少對環(huán)境影響的建議。如何減少材料的使用量是最重要的,但不應(yīng)影響結(jié)構(gòu)的耐久性和使用壽命。鋼筋和混凝土是建設(shè)新橋梁的主要材料。這些材料的制造過程是結(jié)構(gòu)的生命周期中對環(huán)境影響的最大單一貢獻者。接頭,軸承,及護欄經(jīng)常由其它材料制作過程中影響相對而言就少得多,甚至使用期限完了后更換時也是如此。據(jù)此,鋼或混凝土從環(huán)保的角度來看并不一定更好。良好的保養(yǎng)可以防止變質(zhì),延長結(jié)構(gòu)壽命。大多數(shù)情況下,翻新和加強代表著比結(jié)構(gòu)替代更能降低對環(huán)境的影響。在結(jié)構(gòu)封閉時,中斷交通代表著比維持交通更高的環(huán)境影響,在某些情況下,甚至比橋的實際施工過程中產(chǎn)生的影響更高。預見未來的發(fā)展趨勢,例如,提高均布載能力或者使用松配合部件需要額外的甲板或橋墩寬度。調(diào)查結(jié)果顯示,雖然相關(guān)的制造和安裝階段影響現(xiàn)予增加,在較長的運行階段對整個生命周期的影響減少依然有巨大潛力。但是這必須以超標準來保持平衡。馬?。?004年)關(guān)于混凝土橋梁的環(huán)境問題進行了描述,并比較2個關(guān)于不同橋面(包
下載積分: 10 賞幣
上傳時間:2024-03-15
頁數(shù): 7
大?。?0.06(MB)
子文件數(shù):
-
簡介:橋梁工程期刊?ASCE/2009年7月至8月第1頁中文中文4400字,字,3300單詞,單詞,16萬英文字符萬英文字符出處出處HEXJ,FANLC,ZHUHM,ETAL3DCOORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETEOFPRESTRESSEDCONCRETEBEAMBRIDGESJJOURNALOFBRIDGEENGINEERING,2009,144279284鋼索和預應(yīng)力混凝土梁橋之間的三維關(guān)系協(xié)調(diào)鋼索和預應(yīng)力混凝土梁橋之間的三維關(guān)系協(xié)調(diào)何君雄1;范立礎(chǔ)2;朱洪明3;葉忠武4摘要摘要鋼索和混凝土之間的相互作用在預應(yīng)力混凝土橋梁,尤其是在彎預應(yīng)力混凝土橋梁中是復雜的。在荷載作用下彎梁橋的最顯著的行為是,在垂直彎曲的同時,在橫截面發(fā)生扭轉(zhuǎn),使對彎梁橋的力學分析變得復雜。在索和混凝土(CRSC)協(xié)調(diào)關(guān)系的基礎(chǔ)上,采用桁架結(jié)構(gòu)有限元法來分析彎梁橋的空間作用。通過這種方式,所有的預應(yīng)力過程的效果就可以正確地進行模擬,包括由于混凝土的收縮和徐變引起的預應(yīng)力損失。此外,分析間隔鋼索束和混凝土的綜合反應(yīng)是很有效的。CRSC方法的有效性和可靠性體現(xiàn)在我們?yōu)樾睆潣蜷_發(fā)的分析系統(tǒng)WXQ20上。DOIDOI101061/ASCE108407022009144279CECE數(shù)據(jù)庫主題詞數(shù)據(jù)庫主題詞橋梁;箱形梁;橋梁;混凝土;梁;預應(yīng)力;結(jié)構(gòu)模型;三維分析。簡介簡介隨著橋梁結(jié)構(gòu)技術(shù)和交通技術(shù)的發(fā)展,預應(yīng)力混凝土橋梁已被泛應(yīng)用,尤其是彎預應(yīng)力混凝土橋梁該結(jié)構(gòu)有嚴重彎曲扭耦合,使鋼索和混凝土之間的相互作用機理變得復雜。在薄壁箱形截面的應(yīng)用中,還是遇到了各種分析上的困難。許多學者已經(jīng)取得了很大的成就,比如對扭轉(zhuǎn)和大曲率薄壁箱形梁意的義深遠的理論研究(李1987),連續(xù)彎梁橋的剪力滯效應(yīng)(彭,王1998)。為了研究內(nèi)部粘合鋼筋束,未連接鋼筋束和體外預應(yīng)力混凝土梁橋,一個鋼筋束在其與周圍混凝土黏合性能的基礎(chǔ)上,可以被用在預應(yīng)力混凝土結(jié)構(gòu)的有限元分析(KWAKANDKIM2006A,B)。分析高強度預應(yīng)力混凝土梁的極限荷載時把非線性材料變形考慮在內(nèi),為了評估基于應(yīng)變的兼容性和強制平衡體外預應(yīng)力梁的抗彎強度,開始研究一種改進的粘結(jié)折減系數(shù)(CK2003CKANDKH2006A,B)。橋梁工程期刊?ASCE/2009年7月至8月第3頁其中H,Z索和結(jié)構(gòu)中心之間的水平距離和垂直距離;NC,F(xiàn)RC,FVC由結(jié)構(gòu)重心的索在切向和徑向,垂直方向產(chǎn)生的力;以及TC,MRC,MVC混凝土重心的鋼索產(chǎn)生的切向徑向和垂直方向的瞬時力。此外,由于沿光束軸線的索的曲率效應(yīng),分布式力產(chǎn)生于梁的內(nèi)部,如圖2。根據(jù)微量元素的平衡,采用6平衡微分方程,被稱為弗拉索夫方程,如下所示
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 15
大?。?0.38(MB)
子文件數(shù):
-
簡介:ENVIRONMENTALLIFECYCLEASSESSMENTOFBRIDGESJOHANNEHAMMERVOLD1MARTEREENAAS2ANDHELGEBRATTEB?3ABSTRACTTHISPAPERPRESENTSADETAILEDCOMPARATIVEENVIRONMENTALLIFECYCLEASSESSMENTLCACASESTUDYOFTHREEBUILTBRIDGESINNORWAYTOENCOMPASSAWIDESCALEOFBRIDGEDESIGNS,THEANALYSISDEALTWITHASTEELBOXGIRDERBRIDGE,ACONCRETEBOXGIRDERBRIDGE,ANDAWOODENARCHBRIDGETHISSTUDYPRESENTSTHEFIRSTLCAOFROADBRIDGESUSINGASTANDARDIZEDBRIDGECLASSIFICATIONTHELCAINCLUDESAWIDERANGEOFPOLLUTANTSANDAHIGHLEVELOFDETAILINLIFECYCLEMATERIALANDENERGYCONSUMPTIONFINDINGSHEREANDFROMEARLIERLCASONBRIDGESARETOGETHERUSEDASBASESFORGENERALRECOMMENDATIONSONCONDUCTINGLCASONBRIDGESTHESTUDYSHOWSTHATITISTHEPRODUCTIONOFMATERIALSFORTHEMAINLOADCARRYINGSYSTEMSIE,THEBRIDGESUPERSTRUCTUREANDTHEABUTMENTSTHATACCOUNTSFORTHEMAINSHAREOFTHEENVIRONMENTALIMPACTS,ASTHESEPARTSREQUIRELARGEQUANTITIESOFMATERIALS,WITHALIMITEDNUMBEROFMATERIALSBEINGTHEIMPORTANTONESTHECONSTRUCTIONPHASEACCOUNTSFORRELATIVELYFEWERIMPACTSTHEUSEPHASECONTRIBUTESMORESIGNIFICANTLY,MAINLYBECAUSEOFRESURFACINGWITHASPHALTUSEOFBUILDINGEQUIPMENTANDTRANSPORTOFPERSONNELINALLTHELIFECYCLEPHASESAREOFMINORIMPORTANCE,ASARETHEUSEOFFORMWORK,MASTIC,BLASTING,ANDTHEENDOFLIFEINCINERATIONOFWOODTHEENVIRONMENTALISSUESOFGLOBALWARMING,ABIOTICDEPLETION,ANDACIDIFICATIONAREFOUNDTOBETHEMOSTIMPORTANTGIVENTHEASSUMPTIONSMADEINTHISSTUDYACOMPARISONOFTHETHREEBRIDGESSHOWSTHATTHECONCRETEBRIDGEALTERNATIVEPERFORMSBESTENVIRONMENTALLYONTHEWHOLE,BUTWHENITCOMESTOGLOBALWARMING,THEWOODENBRIDGEISBETTERTHANTHEOTHERTWOTHERESULTSSUPPORTTHEIDEATHATITISPOSSIBLETODECIDEUPONENVIRONMENTALLYEFFECTIVEDESIGNALTERNATIVES,ATAFAIRLEVELOFACCURACY,ATDIFFERENTSTAGESOFTHEBRIDGEDESIGNPROCESS,ATARGETTHATISNOWBECOMINGMOREANDMOREEMPHASIZEDINTHEBRIDGEENGINEERINGSECTORDOI101061/ASCEBE194355920000328?2013AMERICANSOCIETYOFCIVILENGINEERSCEDATABASESUBJECTHEADINGSBRIDGESCONSTRUCTIONLIFECYCLESENVIRONMENTALISSUESDECISIONMAKINGAUTHORKEYWORDSBRIDGECONSTRUCTIONBRIDGEMANAGEMENTLIFECYCLEASSESSMENTENVIRONMENTALIMPACTDECISIONMAKINGSUPPORTINTRODUCTIONAFINNISH,SWEDISH,ANDNORWEGIANRESEARCHCOLLABORATION,THEETSIPROJECTSALOKANGAS2010,WASLAUNCHEDIN2006ANDALSOINCLUDEDDENMARKFROM2009ONWARDSTHISPROJECTAIMSATBRIDGELIFECYCLEOPTIMIZATIONANDINCLUDESECONOMIC,ENVIRONMENTAL,ANDAESTHETICISSUESSPANNINGTHEENTIRELIFETIMEOFTHEBRIDGETHENORWEGIANGROUPHASBEENWORKINGONTHEENVIRONMENTALISSUESANDHASDEVELOPEDATOOLFORENVIRONMENTALLIFECYCLEASSESSMENTLCAOFBRIDGES,CALLEDBRIDGELCABRATTEB?ETAL2009THISTOOLALLOWSFORDETAILEDLCASOFBRIDGES,REVEALINGWHATMATERIALSANDPARTSCAUSEIMPACTSANDATWHATSTAGEINTHELIFETIMEOFTHEBRIDGETHESEIMPACTSOCCURTHISARTICLEPRESENTSACASESTUDYOFTHREEBRIDGESANDGIVESRECOMMENDATIONSABOUTPARTICULARLYIMPORTANTPARAMETERSFORTHEENVIRONMENTALPERFORMANCEOFTHESETHREETYPESOFBRIDGESEARLIERLCASTUDIESONBRIDGESHAVEBEENREVIEWED,ANDTHEMAINFINDINGSFROMTHESESTUDIESAREPRESENTEDINTHISPAPERFEWLCASTUDIESONBRIDGESHAVEBEENCARRIEDOUT,ANDTHECASESTUDIESPRESENTEDHERECANBEREGARDEDASASYSTEMATICANDDETAILEDEXTENSIONTOTHEEARLIERSTUDIESINTHEIDENTIFICATIONOFTHEMOSTIMPORTANTPARAMETERSREGARDINGTHEENVIRONMENTALPERFORMANCEOFBRIDGESWEBELIEVETHATTHISISINDEEDIMPORTANTINTHECURRENTPROCESSOFIMPROVEDENVIRONMENTALDESIGNAMONGBRIDGEENGINEERS,PARTICULARLYINTHEEARLYPHASESOFTHEDESIGNPROCESS,WHERELITTLEINFORMATIONMIGHTBEAVAILABLEANDYETTHEREMAYBEGOODOPPORTUNITIESTOINFLUENCEAGOODDESIGNSTRATEGYTHETHREEBRIDGESANALYZEDINTHISPAPERASTEELBOXGIRDERBRIDGE,ACONCRETEBOXGIRDERBRIDGE,ANDAWOODENARCHBRIDGEAREALREADYBUILTANDINUSEINWESTERNNORWAYTHISMEANSTHATONECOULDALSOGETAHOLDOFDETAILEDFACTSABOUTTHECONSUMPTIONOFVARIOUSTYPESOFRESOURCESINTHEPRODUCTIONANDCONSTRUCTIONPHASESOFTHEBRIDGESMOSTOFTHEENERGYANDMATERIALCONSUMPTIONTHROUGHOUTTHELIFECYCLESOFTHEBRIDGESISACCOUNTEDFOR,ANDSEVERALENVIRONMENTALIMPACTCATEGORIESAREINCLUDEDTHEBRIDGESHAVEBEENANALYZEDONTHEBASISOFTHECONTRIBUTIONSOFMATERIALS,BRIDGECOMPONENTS,ANDLIFECYCLEPHASESTOENVIRONMENTALIMPACTSLITERATURECOMPARISONOFDIFFERENTBRIDGEALTERNATIVESAPRESTRESSEDCONCRETEBOXGIRDERBRIDGEANDASTEELCONCRETECOMPOSITEIGIRDERBRIDGEWERECOMPAREDINGERVáSIOANDDASILVA2008THEEMISSIONSCONSIDEREDARECARBONDIOXIDECO2,SULFURDIOXIDESO2,NITROGENOXIDESNOX,VOLATILEORGANICCOMPOUNDSVOC,CARBONMONOXIDECO,METHANECH4,AND1PHDSTUDENT,DEPTOFHYDRAULICANDENVIRONMENTALENGINEERING,INDUSTRIALECOLOGYPROGRAMME,THENORWEGIANUNIVOFSCIENCEANDTECHNOLOGY,N7491TRONDHEIM,NORWAYCORRESPONDINGAUTHOREMAILJOHANNEHAMMERVOLDNTNUNO2PHDSTUDENT,DEPTOFHYDRAULICANDENVIRONMENTALENGINEERING,INDUSTRIALECOLOGYPROGRAMME,THENORWEGIANUNIVOFSCIENCEANDTECHNOLOGY,N7491TRONDHEIM,NORWAY3PROFESSOR,DEPTOFHYDRAULICANDENVIRONMENTALENGINEERING,INDUSTRIALECOLOGYPROGRAMME,THENORWEGIANUNIVOFSCIENCEANDTECHNOLOGY,N7491TRONDHEIM,NORWAYNOTETHISMANUSCRIPTWASSUBMITTEDONFEBRUARY2,2011APPROVEDONOCTOBER20,2011PUBLISHEDONLINEONOCTOBER24,2011DISCUSSIONPERIODOPENUNTILJULY1,2013SEPARATEDISCUSSIONSMUSTBESUBMITTEDFORINDIVIDUALPAPERSTHISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL18,NO2,FEBRUARY1,2013?ASCE,ISSN10840702/2013/2153E161/2500JOURNALOFBRIDGEENGINEERING?ASCE/FEBRUARY2013/153JBRIDGEENG201318153161DOWNLOADEDFROMASCELIBRARYORGBYCHANGSHAUNIVERSITYOFSCIENCEANDTECHNOLOGYON06/19/14COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVEDTHATNOSTUDYHAS,ASYET,DOCUMENTEDTHEENVIRONMENTALLIFECYCLEPERFORMANCEOFBRIDGES,COMPARINGDIFFERENTDESIGNSBYUSINGASTANDARDIZEDBRIDGEDESIGNCLASSIFICATION,WHERETHECONSUMPTIONOFMATERIALSANDENERGYISRELATEDTOTHEVARIOUSBRIDGECOMPONENTSINAMORESYSTEMATICWAYMETHODOLOGYTHISSTUDYAIMSATIDENTIFYINGIMPORTANTPARAMETERSAFFECTINGTHEENVIRONMENTALPERFORMANCEOFTHREEBRIDGESCONSTRUCTEDOFDIFFERENTMATERIALS,STEEL,CONCRETE,ANDWOOD,ASINPUTSTOAMETHODOLOGYOFAMORELIFECYCLEOPTIMIZEDDESIGNFORBRIDGESHENCE,ONEWOULDLIKETOKNOWWHEREINTHELIFECYCLEOFABRIDGEMAJORENVIRONMENTALIMPACTSOCCURANDWHATTYPESOFENVIRONMENTALIMPACTCATEGORIESDOMINATE,WHICHMATERIALSANDACTIVITIESARETHEYMAINLYRELATEDTO,ANDINWHICHCOMPONENTSOFTHEBRIDGEARETHEYTOBEFOUNDTHEDECKSURFACEAREAOFTHEBRIDGESISTHEEFFECTIVEAREAINUSETHEUSEPHASEOF100YEARSANDTHEDEMOLITIONPHASEAREINCLUDED,ANDTHEFUNCTIONALUNITISHENCEDEFINEDAS“1M2EFFECTIVEBRIDGESURFACEAREATHROUGHALIFETIMEOF100YEARS”THISENABLESCOMPARISONAMONGDIFFERENTBRIDGESDESPITETHEFACTTHATTHEYAREBUILTATDIFFERENTLOCATIONSWITHDIFFERENTSIZESSPAN,LENGTH,ANDWIDTHTHEBRIDGESAREALSOANALYZEDINDIVIDUALLYFORTHEIDENTIFICATIONOFIMPORTANTPARAMETERSTHEMATERIALANDENERGYCONSUMPTIONTHROUGHOUTTHELIFETIMESOFTHEBRIDGESIS,ASMUCHASPOSSIBLE,GATHEREDANDENTEREDINTOTHEBRIDGELCASOFTWARE,WHICHISATOOLDEVELOPEDINMATLABANDFEDWITHDATAONEACHSPECIFICBRIDGEFROMEXCELFILESTHEENVIRONMENTALDATAFORTHEVARIOUSMATERIALSUSEDINTHECALCULATIONSAREOBTAINEDBYTHEUSEOFTHESIMAPROLCASOFTWARETOOL,THEECOINVENTDATABASEECOINVENT2008,ANDCOLLECTEDDATAASENVIRONMENTALDATARELATEDTOALLINCLUDEDMATERIALANDENERGYUSETHROUGHOUTTHEBRIDGES’LIFETIMESAREGATHERED,THEYARECHARACTERIZEDUSINGTHECMLIMPACTASSESSMENTMETHODCML2001,YIELDINGRESULTSFORTHEFOLLOWINGSIXENVIRONMENTALCATEGORIESACIDIFICATIONPOTENTIALAP,EUTROPHICATIONPOTENTIALEP,GLOBALWARMINGPOTENTIALGWP,OZONELAYERDEPLETIONPOTENTIALODP,PHOTOCHEMICALOZONECREATIONPOTENTIALPOCP,ANDABIOTICDEPLETIONPOTENTIALADPTHECMLMETHODOLOGYADDITIONALLYINCLUDESFOURMOREIMPACTCATEGORIES,NAMELY,HUMANTOXICITYPOTENTIAL,FRESHWATERECOTOXICITYPOTENTIAL,MARINEAQUATICECOTOXICITYPOTENTIAL,ANDTERRESTRIALECOTOXICITYPOTENTIALTHESECATEGORIESWEREOMITTEDFROMTHISSTUDY,BECAUSEOFUNACCEPTABLYHIGHUNCERTAINTYINTHETOXICITYDATA,PARTICULARLYFORTHEIMPREGNATEDWOODENARCHBRIDGEMIDPOINTRESULTSFORTHESIXIMPACTCATEGORIESAREFURTHERNORMALIZEDUSINGEUROPEANNORMALIZATIONFIGURESHUIJBREGTSETAL2003ANDWEIGHTEDUSINGWEIGHTINGFACTORSDEVELOPEDBYTHEEPAINTHEUNITEDSTATESFORCOMPARISONOFTOTALSCORESOFTHECASEBRIDGESEPA2010QUANTITATIVEDATAFOREACHBRIDGEWEREGATHEREDFROMDRAWINGS,TENDERDOCUMENTS,ANDPROJECTREPORTSHENCE,ITWASPOSSIBLETOACQUIREDETAILEDANDSPECIFICDATAFOREACHBRIDGEANDCOMPAREDIFFERENTDESIGNSBYUSINGASTANDARDIZEDBRIDGEDESIGNCLASSIFICATION,WHERECONSUMPTIONOFMATERIALSANDENERGYISRELATEDTOTHEVARIOUSBRIDGECOMPONENTSINAMORESYSTEMATICWAYBRIDGESCONSIDEREDINTHECASESTUDYTHEBRIDGESSTUDIEDAREALREADYBUILTATDIFFERENTLOCATIONSINWESTERNNORWAYTHEBRIDGESARETHEKLENEVAAGENSTEELBOXGIRDERBRIDGE,FRETHEIMWOODENARCHBRIDGE,ANDHILLERSVIKACONCRETEBOXGIRDERBRIDGETHEMAINSIZEPARAMETERSFORTHEBRIDGESAREGIVENINTABLE1HILLERSVIKAISTHELARGESTBRIDGE,WITHADECKAREAOF417M2THISBRIDGEHASTWOTRAFFICLANESANDONEPAVEMENT,WHILEKLENEVAAGENHASTWOTRAFFICLANESANDNOPAVEMENT,ANDFRETHEIMHASONETRAFFICLANEANDONEPAVEMENTKLENEVAAGENHASASURFACEAREAOF321M2ANDFRETHEIM,229M2THESETHREEBRIDGESWERECHOSEN,BECAUSETHEYREPRESENTBRIDGESOFTHREEDIFFERENTMATERIALS,NAMELY,STEEL,CONCRETE,ANDWOODINTHISWAY,IMPORTANTPARAMETERSAFFECTINGTHEENVIRONMENTALPERFORMANCEFORTHESETYPESOFBRIDGESCANBEIDENTIFIEDTHEMAINLOADBEARINGSYSTEMINTHEKLENEVAAGENBRIDGECONSISTSOFA672TSTEELBOXGIRDER,WHICHISBLASTCLEANED,GALVANIZED,ANDPAINTEDWITHEPOXYANDPOLYURETHANEPAINTFORCORROSIONPROTECTIONTHEBRIDGEDECKCONSISTSOFRCTHISDECKISPROTECTEDFROMWATERINTRUSIONBYALAYEROFMASTICANDASPHALTMEMBRANE,ANDATOPTHIS,THEREISTHESURFACINGLAYEROFASPHALT,WHICHISASSUMEDTOBECOMPOSEDOF944GRAVELAND56BITUMENTHESTEELBOXWASPRODUCEDLOCALLYANDTRANSPORTED75KMBYBOATTOTHEBRIDGESITEITISASSUMEDTHATTHECONCRETEWASPRODUCEDATALOCALMIXINGPLANTANDTRANSPORTED20KMBYTRUCK,ANDTHEREINFORCEMENTWASPRODUCEDINBERGENANDTRANSPORTED90KMBYTRUCKTHEPARAPETSAREMADEOF685TOFGALVANIZEDSTEELTHEMAINLOADBEARINGSYSTEMINTHEFRETHEIMBRIDGEISAWOODENARCH,CONSISTINGOFSALTIMPREGNATED,GLUELAMINATEDWOOD,TREATEDWITHAMORDANTOFOILTHETOPOFTHEARCHESISPROTECTEDFROMRAINFALLBYTHINCOPPERSHEETSTHEREAREALSOSOMESTEELPARTSINTHEBRIDGE,SPECIFICALLYTHECROSSBEAMSUNDERTHEDECKANDTHEBARSCONNECTINGTHESETOTHEARCHTHEBRIDGEDECKISMADEOFCREOSOTEIMPREGNATEDWOODENPLANKSTHEIMPREGNATIONPROCESSOFTHESEPLANKSISINCLUDEDINTHESTUDY,WHILECREOSOTELEAKAGETHROUGHOUTTHELIFETIMEOFTHEBRIDGEISNOTINCLUDEDTHEREASONFORTHISISTHELACKOFASATISFACTORYMETHODFORCALCULATINGTHEAMOUNTOFCREOSOTELEAKEDANDTHECONSEQUENTIALENVIRONMENTALIMPACTSTHEGLUELAMINATEDWOODENARCHESWERETRANSPORTED280KMBYTRUCKFROMTHEPRODUCTIONPLANTTOTHEBRIDGESITETHETRANSPORTATIONOFTHECONSTRUCTIONWOODISASSUMEDTOBEBYTRUCKOVERADISTANCEOF50KMTHECONCRETEISASSUMEDTOBEPRODUCEDATALOCALMIXINGPLANTANDTRANSPORTED20KMBYTRUCKTHEHILLERSVIKABRIDGEMAINLYCONS
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 9
大小: 0.99(MB)
子文件數(shù):
-
簡介:INFLUENCEOFSKEWANGLEONCONTINUOUSCOMPOSITEGIRDERBRIDGEGHOLAMREZANOURI,PHD1ANDZAHEDAHMADI,MSC2ABSTRACTTHEDESIGNOFSKEWEDBRIDGESISBECOMINGMORECUSTOMARYINTHEENGINEERINGCOMMUNITYINTHISPAPER,THEEFFECTOFTHESKEWANGLEONCONTINUOUSCOMPOSITEGIRDERBRIDGESISPRESENTEDUSINGTHREEDIMENSIONALFINITEELEMENTANALYSISSEVENTYTWOMODELSOFTWOSPANBRIDGESWITHVARIOUSSPANRATIOSN?1,155,AND182,SKEWANGLES0–60°,ANDVARIOUSARRANGEMENTSOFINTERMEDIATETRANSVERSEDIAPHRAGMSAREANALYZEDALLMODELSWERESUBJECTEDTOAASHTOHS2044LOADINGRESULTSFORSKEWEDBRIDGESARECOMPAREDWITHTHEREFERENCENONSKEWEDBRIDGE,ASWELLASTOTHEAASHTOSTANDARDSPECIFICATIONSANDAASHTOLRFDSPECIFICATIONSTHERESULTSSHOWTHATASTHESKEWANGLEINCREASES,THESUPPORTMOMENTININTERIORANDEXTERIORGIRDERSRAPIDLYDECREASESITDECREASESABOUT10WHENTHESKEWANGLEISLESSTHAN20°ANDREACHES33FORA45°SKEWANGLETHESHEARFORCEINCREASESINTHEPIERSUPPORTATTHEEXTERIORGIRDERSANDDECREASESATTHEINTERIORONESWITHINCREASINGSKEWANGLEFOREXTERIORGIRDERS,THERATIOOFSHEARFORCEINCREASESUPTO13FORASKEWANGLEOF45°THEAASHTOSTANDARDSPECIFICATIONSOVERESTIMATETHEMAXIMUMBENDINGMOMENTBY20FORASKEWANGLEOF30°ANDN?1ANDBY50FORASKEWANGLEOF45°THEOVERESTIMATIONOFSHEARFORCEISABOUT10FORASKEWANGLEOF45°THEAASHTOLRFDSPECIFICATIONSOVERESTIMATETHELONGITUDINALBENDINGMOMENTANDSHEARFORCETHISOVERESTIMATIONINCREASESWITHANINCREASEOFTHESKEWANGLEANDREACHES12FORASKEWANGLEOF20°AND45FORASKEWANGLEOF45°THERESULTSSHOWTHATTRANSVERSEDIAPHRAGMSPERPENDICULARTOTHELONGITUDINALGIRDERSOFTHEBRIDGESARETHEBESTARRANGEMENTFORLOADDISTRIBUTIONCOMPARINGTHERESULTSOFTHESIMPLIFIEDRELATIONSHIPSOFTHESKEWEDDECKSWITHTHEFINITEELEMENTANALYSISSHOWSTHATTHERESULTSOFTHEPROPOSEDEQUATIONSARECONSERVATIVEFORCONTINUOUSSKEWEDBRIDGESITISNOTEDTHATTHERESULTSPERTAINTOTHOSEBRIDGESWITHSPECIFICCONFIGURATIONSANDTHERESULTSMAYCHANGEIFTHEPRESUMEDCONDITIONSVARY,ALTHOUGHTHETENDENCYSHOULDBESIMILARDOI101061/ASCEBE194355920000273?2012AMERICANSOCIETYOFCIVILENGINEERSCEDATABASESUBJECTHEADINGSCONTINUOUSBRIDGESCOMPOSITEBRIDGESGIRDERBRIDGESSKEWBRIDGESAUTHORKEYWORDSSKEWANGLECONTINUOUSBRIDGEDISTRIBUTIONFACTORCOMPOSITEBRIDGEINTRODUCTIONSKEWEDBRIDGESAREESPECIALLYCOMMONINDEVELOPEDAREASWHEREALIGNMENTISSUESRATHERTHANECONOMICISSUESMAYCONTROLTHEDESIGNOFTHEBRIDGESKEWEDBRIDGESAREALSOQUITECOMMONINMOUNTAINOUSREGIONSWHERETOPOGRAPHICALFEATURESMAYDICTATETHATTHEBRIDGESUPERSTRUCTURECANNOTBEPERPENDICULARTOTHEABUTMENTSANDPIERSINNONSKEWEDBRIDGES,THELOADPATHISSTRAIGHTTOWARDTHESUPPORTINTHEDIRECTIONOFTHESPANINSKEWEDBRIDGES,THISISNOTTHECASEFORASOLIDSLABSKEWBRIDGE,THELOADTENDSTOTAKEASHORTCUTTOTHEOBTUSECORNERSOFTHEBRIDGEINBRIDGEDECKSSUPPORTEDBYLONGITUDINALGIRDERS,THISEFFECTALSOOCCURS,ALTHOUGHITISLESSPRONOUNCEDTHISCHANGEINDIRECTIONOFTHELOADPATHINHIGHLYSKEWEDBRIDGESBRINGSABOUTTHEFOLLOWINGSPECIALCHARACTERISTICSSIGNIFICANTTORSIONALMOMENTSINTHEDECKSLAB,DECREASEINLONGITUDINALMOMENT,INCREASEINTRANSVERSEMOMENT,CONCENTRATIONOFREACTIONFORCESANDNEGATIVEMOMENTSATTHEOBTUSECORNERS,SMALLREACTIONS,ANDAPOSSIBILITYOFUPLIFTREACTIONFORCESATTHEACUTECORNERSTHESESPECIALCHARACTERISTICSOFSKEWBRIDGESMAKETHEIRANALYSISANDDESIGNMOREINTRICATETHANFORNONSKEWEDBRIDGESINTHEPAST,SKEWEDBRIDGESWEREANALYZED,DESIGNED,ANDCONSTRUCTEDINTHESAMEWAYASSTRAIGHTBRIDGESREGARDLESSOFTHEMAGNITUDEOFTHESKEWANGLEMANYDESIGNFACTORSWERETREATEDINTHESAMEWAYFORSKEWEDANDSTRAIGHTBRIDGESONEEXAMPLEOFTHISISTHELIVELOADDISTRIBUTIONFACTORLLDF,WHICHINTHEDESIGNCODESMAKETHEDESIGNSTRAIGHTFORWARDANDPROVIDEASIMPLEANDQUICKWAYOFEVALUATINGABRIDGETHELLDFISAFUNCTIONOFPARAMETERSSUCHASTHEBRIDGEGEOMETRY,RELATIVESTIFFNESSOFTHECOMPONENTS,ANDNATUREOFTHELOADSTHEAASHTO2003STANDARDSPECIFICATIONSPROVIDEDISTRIBUTIONFACTORSFORTHEINTERIORGIRDERSOFSIMPLYSUPPORTEDBRIDGESASAFUNCTIONOFGIRDERSPACINGONLYTHISCODEDOESNOTCONSIDERTHEEFFECTOFTHESKEWANGLEANDBRIDGECONTINUITYTHEONTARIOHIGHWAYBRIDGEDESIGNCODEOMTC1992ACCOUNTSFORLONGITUDINALANDTRANSVERSERIGIDITIESOFBRIDGESINADDITIONTOTHEGIRDERSPACINGHOWEVER,THEMETHODISLIMITEDTOSIMPLYSUPPORTEDANDSMALLSKEWANGLEBRIDGESTHECURRENTAASHTOLRFDBRIDGEDESIGNSPECIFICATIONSAASHTO2010RECOGNIZESTHATTHELLDFISAFUNCTIONOFGIRDERSPACING,SPANLENGTH,SLABTHICKNESS,ANDBEAMSTIFFNESSTHELLDFSARESPECIFIEDDIFFERENTLYFOREXTERIORANDINTERIORGIRDERS,FORSHEARANDMOMENT,ANDFORONELANELOADEDANDTWOORMORELANELOADEDCASESTHEAASHTOLRFDSPECIFICATIONSINTRODUCETHEREDUCTIONFACTORFORTHELLDFASAFUNCTIONOFTHESKEWANGLETHESKEWANGLEISUNDOUBTEDLYANIMPORTANTPARAMETERFORSKEWEDBRIDGEBEHAVIORSSUCHASTHELOADDISTRIBUTIONFACTORANDTHELOADEFFECTONBEARINGSZOKAIEETAL1991KHALEELANDITANI1990PRESENTEDAMETHODFORDETERMININGTHEBENDINGMOMENTINCONTINUOUSNORMALANDSKEWEDSLABANDGIRDERBRIDGESOWINGTOLIVELOADSTHEYCONCLUDEDTHATTHEAASHTOSTANDARD1ASSISTANTPROFESSOR,CIVILENGINEERINGGROUP,PAYAMENOORUNIV,TEHRAN,IRANCORRESPONDINGAUTHOREMAILGHOLAMREZANOURIGMAILCOM2GRADUATE,STRUCTURALENGINEERING,UNIVOFMOHAGHEGH,ARDABILI,IRANNOTETHISMANUSCRIPTWASSUBMITTEDONSEPTEMBER3,2010APPROVEDONMAY24,2011PUBLISHEDONLINEONMAY26,2011DISCUSSIONPERIODOPENUNTILDECEMBER1,2012SEPARATEDISCUSSIONSMUSTBESUBMITTEDFORINDIVIDUALPAPERSTHISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL17,NO4,JULY1,2012?ASCE,ISSN10840702/2012/4617–623/2500JOURNALOFBRIDGEENGINEERING?ASCE/JULY/AUGUST2012/617JBRIDGEENG201217617623DOWNLOADEDFROMASCELIBRARYORGBYCHANGSHAUNIVERSITYOFSCIENCEANDTECHNOLOGYON03/13/14COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVEDOFN?155ANDSKEWANGLESOF30°,THEMODELWASEXTENDEDTOBETHESAMEASTHEEBEIDOANDKENNEDY1996A,BMODELCOMPARISONOFTHEMOMENTDISTRIBUTIONFACTORFORTHEINTERIORGIRDERSHOWEDADIFFERENCEOFLESSTHAN25THEFEARESULTSFORTHETWOLANEBRIDGESCONSIDEREDINTERMSOFTHEMAXIMUMLONGITUDINALBENDINGMOMENTANDTHESHEARFORCEINTHEEXTERIORANDINTERIORGIRDERSATTHEPIERSUPPORTAREREPORTEDSUBSEQUENTLYTHEMAXIMUMFEABENDINGMOMENTISPRESENTEDINTHEFORMOFTHERATIOMΑ∕M0,WHEREMΑISTHEMAXIMUMFEAMOMENTINTHEBRIDGEFORAGIVENSKEWANGLEOFΑBETWEEN0AND60°,ANDM0ISTHEFEAMOMENTFORANONSKEWEDBRIDGESKEWANGLEOF0°SIMILARLY,THERATIOVΑ∕V0ISCALCULATEDFORSHEARFORCEMAXIMUMLONGITUDINALBENDINGMOMENTRATIOATPIERSUPPORTTHERATIOOFMΑ∕M0FORTHEMAXIMUMLONGITUDINALMOMENTATINTERIORGIRDERSISSHOWNINFIG2AFOREACHOFTHETHREESPANRATIOS1,155,AND182VERSUSSKEWANGLESITISOBSERVEDTHATTHEMAXIMUMLONGITUDINALMOMENTINTHEINTERIORGIRDERSATTHEPIERSUPPORTDECREASESWITHTHEINCREASEOFSKEWANGLETHISDECREASEISABOUT10WHENSKEWANGLESARELESSTHAN20°WITHANINCREASEINSKEWANGLEUPTO45°,THESUPPORTMOMENTDECREASESABOUT33ASILLUSTRATEDINFIG2B,THEDECREASEOFTHEBENDINGMOMENTFOREXTERIORGIRDERSAPPEARSTOBEINSIGNIFICANTWHENTHESKEWANGLEISLESSTHAN20°HOWEVER,WITHANINCREASEINTHESKEWANGLETO30°THERATIODECREASESTOABOUT086,ANDITFURTHERDECREASESTOABOUT071ASTHESKEWANGLEINCREASESTO45°MAXIMUMSHEARFORCESRATIOATPIERSUPPORTFIG3ADEMONSTRATESTHEEFFECTOFSKEWANGLEONTHESHEARFORCEATTHEPIERSUPPORTFORINTERIORGIRDERSTHESHEARFORCEDECREASEDATTHEPIERSUPPORTININTERIORGIRDERSWITHANINCREASEINTHEANGLEOFSKEWTHISRATIOWASABOUT087FORSKEWANGLESLESSTHAN30°,ANDITDECREASEDTOABOUT078FORBRIDGESWITHSKEWANGLESOF45°THESHEARFORCERATIOVΑ∕V0FOREXTERIORGIRDERSATTHEPIERSUPPORTISSHOWNINFIG3B,INWHICHITCANBEOBSERVEDTHATTHESHEARFORCEATTHEPIERSUPPORTFOREACHOFTHETHREESPANRATIOS1,155,AND182INCREASEDSIGNIFICANTLYWITHANINCREASEINTHESKEWANGLEFIG1CROSSSECTIONOFTHEFINITEELEMENTMODELANDTWOARRANGEMENTSOFTRANSVERSEDIAPHRAGMS060708091110153045MΑ/MOSKEWANGLEDEGREEN1N155N182060708091110153045MΑ/MOSKEWANGLEDEGREEABN1N155N182FIG2FEAMAXIMUMLONGITUDINALBENDINGMOMENTRATIOMΑ∕M0ATTHEPIERSUPPORTOFTWOLANEBRIDGESFORAINTERNALGIRDERSANDBEXTERNALGIRDERSJOURNALOFBRIDGEENGINEERING?ASCE/JULY/AUGUST2012/619JBRIDGEENG201217617623DOWNLOADEDFROMASCELIBRARYORGBYCHANGSHAUNIVERSITYOFSCIENCEANDTECHNOLOGYON03/13/14COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVED
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 7
大?。?0.47(MB)
子文件數(shù):
-
簡介:3DCOORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETEOFPRESTRESSEDCONCRETEBEAMBRIDGESXIONGJUNHE1LICHUFAN2HONGMINGZHU3ANDZHONGWUYE4ABSTRACTINTERACTIONBETWEENSTEELCABLESANDCONCRETEISCOMPLICATEDINPRESTRESSEDCONCRETEBRIDGES,ESPECIALLYINCURVEDPRESTRESSEDCONCRETEBRIDGESTHEMOSTSIGNIFICANTBEHAVIOROFCURVEDBEAMBRIDGESUNDERTHELOADSISTHAT,ATTHESAMETIMEOFVERTICALFLEXURE,TORSIONOCCURSONTHECROSSSECTION,WHICHCOMPLICATESTHEMECHANICALANALYSISTOCURVEDBEAMBRIDGESBASEDONCOORDINATINGRELATIONSOFSTEELCABLESANDCONCRETE?CRSC?,THEGRILLAGESTRUCTUREFINITEELEMENTMETHODWASADOPTEDTOANALYZETHESPATIALEFFECTOFCURVEDBEAMBRIDGESTHISWAY,THEEFFECTOFALLPRESTRESSINGPROCEDURESCANBESIMULATEDPROPERLY,INCLUDINGTHEPRESTRESSINGLOSSDUETOCONCRETESHRINKAGEANDCREEP,BATCHPRESTRESSINGOFTHECABLES,ETCFURTHERMORE,ITISEFFECTIVETOANALYZETHEINTEGRATEDBEHAVIOROFTHECOMBINEDSTEELCABLESSPACEOUTANDCONCRETETHEEFFICIENCYANDRELIABILITYOFTHECRSCMETHODISDEMONSTRATEDBYOURANALYSISSYSTEMWXQ20DEVELOPEDFORCURVEDSKEWBRIDGESDOI101061/?ASCE?10840702?2009?144?279?CEDATABASESUBJECTHEADINGSBRIDGES,BOXGIRDERBRIDGES,CONCRETEBEAMSPRESTRESSINGSTRUCTURALMODELSTHREEDIMENSIONALANALYSISINTRODUCTIONWITHTHEDEVELOPMENTOFBRIDGESTRUCTURETECHNOLOGYANDTRAFFICTECHNOLOGY,THEPRESTRESSEDCONCRETEBRIDGESHAVEBEENWIDELYAPPLIED,ESPECIALLYTOCURVEDPRESTRESSEDCONCRETEBRIDGESTHESTRUCTURESHAVESERIOUSCURVATURETWISTINGCOUPLING,WHICHCOMPLICATESTHEINTERACTIONMECHANISMBETWEENSTEELCABLESANDCONCRETEINAPPLICATIONOFTHINWALLEDBOXSECTIONS,ALLKINDSOFDIFFICULTIESOFTHINWALLEDBOXSECTIONANALYSISAREENCOUNTEREDMANYSCHOLARSHAVEMADEGREATACHIEVEMENTS,SUCHASPROFOUNDTHEORETICALRESEARCHTOTORSIONANDBENDINGOFBIGCURVATURETHINWALLEDBOXBEAMS?LI1987?,SHEARLAGEFFECTOFCURVEDCONTINUOUSBEAMBRIDGES?PENGANDWANG1998?INORDERTOSTUDYSTRUCTURALBEHAVIORSOFINTERNALLYBONDEDTENDON,UNBONDEDTENDONANDEXTERNALLYPRESTRESSEDCONCRETEBEAMBRIDGES,ATENDONMODELTHATCANBEUSEDINFINITEELEMENTANALYSESOFPRESTRESSEDCONCRETESTRUCTURESWITHBONDEDTENDONSWASSTUDIEDBASEDONTHEBONDCHARACTERISTICSBETWEENATENDONANDITSSURROUNDINGCONCRETE?KWAKANDKIM2006A,B?THEULTIMATELOADOFPRESTRESSEDHIGHSTRENGTHCONCRETEBEAMWASANALYZEDWITHNONLINEARMATERIALPROPERTIESCONSIDERED?LIUANDYAN2006?AMODIFIEDBONDREDUCTIONCOEFFICIENTISSTUDIEDFOREVALUATIONOFTHEFLEXURALSTRENGTHOFEXTERNALLYPRESTRESSEDBEAMSBASEDONSTRAINCOMPATIBILITYANDFORCEEQUILIBRIUM?CK2003CKANDKH2006A,B?HOWEVER,HOWTOTREATINTERNALOREXTERNALPRESTRESSINGFORCESANDTOCONSIDERTHEINTERACTIONBETWEENSTEELCABLESANDCONCRETETOCONDUCTLINEARORNONLINEARANALYSISISSTILLAPROBLEMWORTHSTUDYINGSINCETHEBEGINNING,INTERNALPRESTRESSINGFORCESHAVEBEENTRADITIONALLYTREATEDASEXTERNALLOADSINANALYSIS?WU1990SUN1995?THISISANAPPROXIMATEEQUIVALENTMETHOD,WHICHHASSOMELIMITATIONSASWELLASSOMEERRORSINTHERESULTSUNDERCOMPLICATEDSITUATIONSINLONGSPANBRIDGES,ASTOTHENEEDOFSTRUCTURALFORCES,THEPRESTRESSINGCABLESWITHDIFFERENTWORKINGPROCEDURESARESPATIALCURVESWITHBIGCURVATURESINSOMEDIRECTIONS,THECALCULATIONWOULDBEVERYCOMPLICATEDINTHISCASE,THEERROROFTHERESULTSWOULDOCCUREASILYIFTHEAPPROXIMATESTIMULATIONMETHODOFTHEEXTERNALLOADSISADOPTEDINORDERTOHAVEABETTERUNDERSTANDINGOFTHESTRUCTURALBEHAVIOROFTHEPRESTRESSEDCONCRETEBEAMBRIDGES?INCLUDINGINTERNALLYBONDEDTENDONS,UNBONDEDTENDON,ANDEXTERNALLYPRESTRESSED?,THISPAPERPROPOSESAFINITEELEMENTANALYSISMETHODBASEDONCOORDINATINGRELATIONSOFSTEELCABLESANDCONCRETE?CRSC?,TOIMPROVETHEACCURACYOFTHEANALYSIS,ESPECIALLYTOTHEANALYSISOFCURVEDPRESTRESSEDCONCRETEBRIDGESTRADITIONALANALYSISMETHODOFPRESTRESSINGFORCESANDITSPROBLEMSTHEEQUIVALENTLOADMETHOD?WU1990SUN1995?ISAPPLIEDINTHETRADITIONALANALYSISOFPRESTRESSINGFORCESTHETHEORYOFTHISMETHODISTOSEPARATEPRESTRESSINGCABLESFROMTHESTRUCTURES,EQUALIZETHEIREFFECTSASEXTERNALLOADS,ANDTHENADDINGTHOSELOADSINTOTHESTRUCTURALCALCULATIONDIAGRAMASTHEEXTERNALLOADSTOEVALUATETHEPRESTRESSINGEFFECTTHROUGHTHEVECTORANALYSIS,THETHREEDIMENSIONALFORCESPRODUCEDBYPRESTRESSINGCABLESATTHEGRAVITYCENTERONTHEENDSECTIONISSHOWNASEQ?1?ANDFIG11PROFESSOR,SCHOOLOFCOMMUNICATIONS,WUHANUNIVOFTECHNOLOGY,WUHAN430063,CHINA?CORRESPONDINGAUTHOR?EMAILHXJWHUT163COM2ACADEMICIAN,PROFESSOR,DEPTOFBRIDGEENGINEERING,TONGJIUNIV,SHANGHAI200092,CHINAEMAILLEFANTONGJIEDUCN3SENIORENGINEER,ROADBRIDGELTDCOOFHUBEIPROVINCE,WUHAN430056,CHINAEMAILLEAF510163COM4SENIORENGINEER,ROADBRIDGELTDCOOFHUBEIPROVINCE,WUHAN430056,CHINAEMAILLEAF510163COMNOTETHISMANUSCRIPTWASSUBMITTEDONAUGUST28,2006APPROVEDONDECEMBER12,2008PUBLISHEDONLINEONJUNE15,2009DISCUSSIONPERIODOPENUNTILDECEMBER1,2009SEPARATEDISCUSSIONSMUSTBESUBMITTEDFORINDIVIDUALPAPERSTHISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL14,NO4,JULY1,2009?ASCE,ISSN10840702/2009/4279–284/2500JOURNALOFBRIDGEENGINEERING?ASCE/JULY/AUGUST2009/279JBRIDGEENG200914279284DOWNLOADEDFROMASCELIBRARYORGBYCHANGSHAUNIVERSITYOFSCIENCEANDTECHNOLOGYON02/26/14COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVEDINNORMALTEMPERATUREISCALLEDTHEHETEROGENEOUSMATERIALCOMBINEDCOMPONENTTHECOMBINEDCOMPONENTCONCEPTPROPOSEDHEREISMAINLYCONSIDEREDFROMTHEFUNCTIONASPECTCOMBINEDFROMSTEELCABLESANDCONCRETE,THECOMPONENTPOSSESSESSOMEFUNCTIONS,SUCHASANTIPRESSUREANDANTIBENDINGTHEREARENOTONLYINDEPENDENCESBETWEENTHEMBUTALSOCOORDINATINGRELATIONSTHEMASTERSLAVERYRELATIONSARECALLEDCOORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETEHE?2002A,B,2004?HADARESEARCHONTHETWODIMENSIONAL?2D?COORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETE,ANDFURTHERRESEARCHONTHETHREEDIMENSIONAL?3D?COORDINATINGRELATIONSBETWEENCONCRETEANDSTEELCABLESISGIVENHERE3DCOORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETEITISJUSTASWELLWETAKEANINTERNALLYBONDEDPRESTRESSEDCONCRETEBEAMBRIDGEASANEXAMPLETODOTHEANALYSISWHERETHEANALYSISFIGUREISSHOWNINFIG3NODE2ONSTEELCABLEISDRIVENBYNODE1ONACONCRETEBEAM,THECOORDINATEOFPOINT1IS?X,Y,Z?,THECOORDINATEOFPOINT2IS?X?,Y?,Z??,THESPATIALDISTANCEBETWEENNODE1AND2ISD,ANDTHEPROJECTIONOFTHESPATIALDISTANCEDISDX,DY,DZ,THENDXX?X?DYY?Y?DZZ?Z?SUPPOSETHEPROJECTIONSOFTHEDISTANCEBETWEEN1AND2ONTHEPLANEXOY,YOZ,ANDZOXARED1,D2,D3RESPECTIVELYANDTHEANGLESBETWEENPROJECTIONOFTHEBEAMAXESINTHEPLANEXOY,YOZ,ZOX,ANDCOORDINATEAXESX,Y,ZARE?1,?2,AND?3,RESPECTIVELY?X,?Y,?ZARECORNERSCIRCLINGAROUNDCOORDINATEAXESX,Y,Z,RESPECTIVELY,ANDANTICLOCKWISEDIRECTIONISSETASAPOSITIVEDIRECTIONSO,IFWESET????U,?,?,?X,?Y,?Z?ASDISPLACEMENTOFPOINT1,?????U?,??,W???NOANGLEDISPLACEMENT?ASDISPLACEMENTOFPOINT2,ANDGETU?UDY?Z?DZ?Y???DZ?X?DX?Z???DX?Y?DY?X?4?FORMULA?4?SHOWSTHERELATIONSBETWEENDISPLACEMENT?????U?,??,W??OFPOINT2ONTHESTEELCABLEANDDISPLACEMENT????U,?,?,?X,?Y,?Z?OFPOINT1ONTHECONCRETESHAPECENTERINONESECTIONTHROUGHTHEANALYSISONCOORDINATINGRELATIONSBETWEENSTEELCABLESANDCONCRETE,ITISVERYCONVENIENTTOCONSIDERBOTHTHEEFFECTOFSTEELCABLESONSHRINKANDCREEPOFCONCRETEANDTHEEFFECTOFSHRINKANDCREEPOFCONCRETEONSTEELCABLEFORCES,ETCFURTHERMORE,ALLOFTHEMAREEASILYSOLVEDBYTHEPROCESSOFSOLUTIONOFTHEFEMEQUILIBRIUMEQUATIONSINDIVIDUALPARAMETERSTOREFLECTCIRCUMSTANCESOFINTERNALLYBONDEDTENDON,UNBONDEDTENDON,ANDEXTERNALLYPRESTRESSEDCONCRETEINORDERTOEXPLAINTHEINDIVIDUALPARAMETERSINEQ?4?,ASIMPLETWODIMENSIONALLEVELPRESTRESSEDCONCRETEBEAMISSHOWNINFIG4SUPPOSETHATDISTHEDISTANCEFROMPOINT2ONTHECABLETOPOINT1ONTHEGRAVITYCENTEROFTHEBEAM,THEDISPLACEMENTSOFPOINT1ANDPOINT2ARE?U,?,??AND?U?,???,RESPECTIVELYHENCE,EQ?4?BECOMESASEQ?5?UNDERINTERNALLYBONDEDTENDONU?UD?????5?WHILEEQ?4?BECOMESASEQ?6?UNDERINTERNALLYUNBONDEDTENDON????6?FIG5DESCRIBESABEAMOFEXTERNALLYPRESTRESSEDCONCRETEEQ?5?FITSBONDEDTENDONOFEXTERNALLYPRESTRESSEDCONCRETE,ANDEQ?6?FITSANUNBONDEDTENDONOFEXTERNALLYPRESTRESSEDCONCRETEITISEMPHASIZEDTHATEQ?5?OREQ?6?ISONLYAIMEDATTOTHENODESONDEVIATIONBLOCKSFROMWHATHASBEENDISCUSSEDABOVE,THEMEANINGSOFALLPARAMETERSINEQ?4?AREEASILYUNDERSTOODFURTHERMORE,ITALSODEMONSTRATESTHEAPPLICATIONSININTERNALLYBONDEDTENDONS,UNBONDEDTENDONS,ANDEXTERNALLYPRESTRESSEDCONCRETEOZYX21DZDYDXFIG3SPATIALGEOMETRYRELATIONSHIPOFMASTERSLAVERYNODES21BEAMAXISCABLEELEMENTDDFIG4SIMPLETWODIMENSIONALLEVELPRESTRESSEDCONCRETEBEAMFIG5BEAMOFEXTERNALLYPRESTRESSEDCONCRETEJOURNALOFBRIDGEENGINEERING?ASCE/JULY/AUGUST2009/281JBRIDGEENG200914279284DOWNLOADEDFROMASCELIBRARYORGBYCHANGSHAUNIVERSITYOFSCIENCEANDTECHNOLOGYON02/26/14COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVED
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 6
大?。?0.35(MB)
子文件數(shù):
-
簡介:此文檔是畢業(yè)設(shè)計外文翻譯成品(含英文原文中文翻譯),無需調(diào)整復雜的格式下載之后直接可用,方便快捷本文價格不貴,也就幾十塊錢一輩子也就一次的事外文標題GEOMETRICDESIGNOFHIGHWAYS外文作者MANOJKJHA文獻出處CIVILENGINEERINGJOURNAL,2018,1242339如覺得年份太老,可改為近2年,畢竟很多畢業(yè)生都這樣做英文2263單詞,13635字符字符就是印刷符,中文3469漢字。(如果字數(shù)多了,可自行刪減,大多數(shù)學校都是要求選取外文的一部分內(nèi)容進行翻譯的。)GEOMETRICDESIGNOFHIGHWAYSTHEROADISONEKINDOFLINEARCONSTRUCTIONUSEDFORTRAVELITISMADEOFTHEROADBED,THEROADSURFACE,THEBRIDGE,THECULVERTANDTHETUNNELINADDITION,ITALSOHASTHECROSSINGOFLINES,THEPROTECTIVEPROJECTANDTHETRAFFICENGINEERINGANDTHEROUTEFACILITYTHEROADBEDISTHEBASEOFROADSURFACE,ROADSHOULDER,SIDESLOPE,SIDEDITCHFOUNDATIONSITISSTONEMATERIALSTRUCTURE,WHICHISDESIGNEDACCORDINGTOROUTESPLANEPOSITIONTHEROADBED,ASTHEBASEOFTRAVEL,MUSTGUARANTEETHATITHASTHEENOUGHINTENSITYANDTHESTABILITYTHATCANPREVENTTHEWATERANDOTHERNATURALDISASTERFROMCORRODINGTHEROADSURFACEISTHESURFACEOFROADITISSINGLEORCOMPLEXSTRUCTUREBUILTWITHMIXTURETHEROADSURFACEREQUIREBEINGSMOOTH,HAVINGENOUGHINTENSITY,GOODSTABILITYANDANTISLIPPERYFUNCTIONTHEQUALITYOFROADSURFACEDIRECTLYAFFECTSTHESAFE,COMFORTANDTHETRAFFICHIGHWAYGEOMETRYDESIGNSTOCONSIDERHIGHWAYHORIZONTALALIGNMENT,VERTICALALIGNMENTTWOKINDSOFLINEARANDCROSSSECTIONALCOMPOSITIONOFCOORDINATION,BUTALSOPAYATTENTIONTOTHESMOOTHFLOWOFTHELINEOFSIGHT,ETCDETERMINETHEROADGEOMETRY,CONSIDERTHETOPOGRAPHY,SURFACEFEATURES,RATIONALUSEOFLANDANDENVIRONMENTALPROTECTIONFACTORS,TOMAKEFULLUSEOFTHEHIGHWAYGEOMETRICCOMPONENTSOFREASONABLESIZEANDTHELINEARCOMBINATIONCURVE,SUPERELEVATIONBEGINSANDTHEVEHICLEISTILTEDINWARD,BUTTHEPASSENGERMUSTREMAINVERTICALSINCETHEREISONCENTRIFUGALFORCEREQUIRINGCOMPENSATIONWHENTHEVEHICLEREACHESTHECURVE,FULLCENTRIFUGALFORCEDEVELOPSATONCE,ANDPULLSTHERIDEROUTWARDFROMHISVERTICALPOSITIONTOACHIEVEAPOSITIONOFEQUILIBRIUMHEMUSTFORCEHISBODYFARINWARDASTHEREMAININGSUPERELEVATIONTAKESEFFECT,FURTHERADJUSTMENTINPOSITIONISREQUIREDTHISPROCESSISREPEATEDINREVERSEORDERASTHEVEHICLELEAVESTHECURVEWHENEASEMENTCURVESAREINTRODUCED,THECHANGEINRADIUSFROMINFINITYONTHETANGENTTOTHATOFTHECIRCULARCURVEISEFFECTEDGRADUALLYSOTHATCENTRIFUGALFORCEALSODEVELOPSGRADUALLYBYCAREFULAPPLICATIONOFSUPERELEVATIONALONGTHESPIRAL,ASMOOTHANDGRADUALAPPLICATIONOFCENTRIFUGALFORCECANBEHADANDTHEROUGHNESSAVOIDEDEASEMENTCURVESHAVEBEENUSEDBYTHERAILROADSFORMANYYEARS,BUTTHEIRADOPTIONBYHIGHWAYAGENCIESHASCOMEONLYRECENTLYTHISISUNDERSTANDABLERAILROADTRAINSMUSTFOLLOWTHEPRECISEALIGNMENTOFTHETRACKS,ANDTHEDISCOMFORTDESCRIBEDHERECANBEAVOIDEDONLYBYADOPTINGEASEMENTCURVESONTHEOTHERHAND,THEMOTORVEHICLEOPERATORISFREETOALTERHISLATERALPOSITIONONTHEROADANDCANPROVIDEHISOWNEASEMENTCURVESBYSTEERINGINTOCIRCULARCURVESGRADUALLYHOWEVER,THISWEAVINGWITHINATRAFFICLANEBUTSOMETIMESINTOOTHERLANESISDANGEROUSPROPERLYDESIGNEDEASEMENTCURVESMAKEWEAVINGUNNECESSARYITISLARGELYFORSAFETYREASONS,THEN,THATEASEMENTCURVESHAVEBEENWIDELYADOPTEDBYHIGHWAYAGENCIESFORTHESAMERADIUSCIRCULARCURVE,THEADDITIONOFEASEMENTCURVESATTHEENDSCHANGESTHELOCATIONOFTHECURVEWITHRELATIONTOITSTANGENTSHENCETHEDECISIONREGARDINGTHEIRUSESHOULDBEMADEBEFORETHEFINALLOCATIONSURVEYTHEYPOINTOFBEGINNINGOFANORDINARYCIRCULARCURVEISUSUALLYLABELEDTHEPCPOINTOFCURVEORBCBEGINNINGOFCURVEITSENDISMARKEDTHEPTPOINTOFTANGENTORECENDOFCURVEFORCURVESTHATINCLUDEEASEMENTS,THECOMMONNOTATIONIS,ASSTATIONINGINCREASESTSTANGENTTOSPIRAL,SCSPIRALTOCIRCULARCURVE,CSCIRCULARCURVETOSPIRAL,ANDSTSPIRALGOTANGENT
下載積分: 10 賞幣
上傳時間:2024-03-15
頁數(shù): 11
大?。?0.06(MB)
子文件數(shù):
-
簡介:中文中文5300字,字,4000單詞,單詞,22萬英文字符萬英文字符出處出處NGUYENHH,TASSOULASJLDIRECTIONALEFFECTSOFSHEARCOMBINEDWITHCOMPRESSIONONBRIDGEELASTOMERICBEARINGSJJOURNALOFBRIDGEENGINEERING,2010,1517380畢業(yè)設(shè)計(論文)資料附件畢業(yè)設(shè)計(論文)資料附件外文文獻原文及譯文學生姓名學生姓名學號班級專業(yè)指導教師指導教師內(nèi)克1970,HOLOWNIA1971年)。根特和林德利(1959年)的研究表明了在壓力下橡膠塊的壓縮模量是楊氏模量和形狀因子的函數(shù),其值為橫截面積與自由力作用區(qū)之比。在推導過程中,橡膠被看作線彈性可壓縮材料,其總位移由兩個簡單的變形值疊加橡膠塊的均勻變形和考慮連接條件之后的側(cè)向變形。抵達根特和邁內(nèi)克(1970年)通過一個類似的方法,得到了在低等級壓力下橡膠支座的近似處理方法。這個辦法在計算矩形截面和類橢圓截面橡膠支座的剪力和彎矩時也能使用。此外,在受拉、受壓、受彎的情況下結(jié)合面的剪應(yīng)力也能得出。后來,STANTON和ROEDER1982,1992,ROEDER等人1987,1989,還有ROEDER和STANTON1991分別發(fā)表了結(jié)合分析和實驗的研究結(jié)果,這個研究結(jié)果導致了設(shè)計規(guī)范的改進。羅德1982,1992年,羅德1987年,1989年,和羅德和斯坦頓19赫爾曼等人(1988)通過一個均質(zhì)的連續(xù)模型進行了橡膠橋梁支座的非線性有限元分析。YEOH等人(2002年)將對二維橡膠支座性能的調(diào)查研究擴展到了三維層次。其研究對象包括各種形狀的橡膠塊,如長條狀、圓盤形、方形、和環(huán)狀,那些通常被認為不可能的假設(shè)也被更精確的修改為幾乎不可能,從而得到更為精確的結(jié)果。最近,霍頓等(2002年)研究了細長的矩形和圓形橫截面的橡膠塊軸心受壓情況。他們采用疊加方式得出了各軸向變形的近似表達式,以及能夠完全滿足基于經(jīng)典彈性理論方程和條件的應(yīng)力分布的表達式。但對于以摩擦摩擦方式連接的橡膠墊的研究很少。可以估計,當橡膠和剛性表面之間發(fā)生滑動時,在摩擦接觸條件下的壓縮模量低于粘結(jié)條件下的壓縮模量。實際上,壓縮模量與摩擦系數(shù)的大小是有關(guān)的。在此基礎(chǔ)上,1975年DISCENZO使用圓盤支座來研究壓縮模量和應(yīng)力分布,接觸面的相互作用是以庫侖摩擦力模型來描述的。赤坂等人(1992)之后利用輪胎橡膠得到了在摩擦連接的方式下橡膠支座的性能。2001年KIM和PARK發(fā)表了在平面應(yīng)力下的矩形橡膠塊的壓力分布情況。為了能更真實的模擬橡膠的非線性彈性和摩擦接觸條件,從而了解橡膠支座的性能,研究使用了有限元方法。HAMZEH等人。(1998年)提出了一種二維非線性P型有限元法來分析橡膠支座。YEOH提出的應(yīng)變能密度函數(shù)能用來模擬橡膠的性能,在他的研究中,鋼是作為一種雙線性彈塑性材料來處理的。他認為橡膠支座處于一個平面應(yīng)變狀態(tài),并受到壓力和剪力(剪力導致的橫向位移量等于
下載積分: 10 賞幣
上傳時間:2024-03-17
頁數(shù): 15
大小: 1.01(MB)
子文件數(shù):
-
簡介:DIRECTIONALEFFECTSOFSHEARCOMBINEDWITHCOMPRESSIONONBRIDGEELASTOMERICBEARINGSHIEUHNGUYEN1ANDJOHNLTASSOULAS,MASCE2ABSTRACTELASTOMERICBEARINGSAREWIDELYUSEDINBRIDGESUPPORTSTOACCOMMODATETHERMALANDOTHERMOVEMENTSTHESTUDYPRESENTEDINTHISPAPEREXTENDSANEARLIERINVESTIGATIONOFTWODIMENSIONALBEARINGPERFORMANCETOTHREEDIMENSIONSLARGEDEFORMATIONRUBBERHYPERELASTICITYISREVIEWEDANDATHEORETICALMODELISDESCRIBEDWITHTHESTEELREINFORCEDBEARINGSUBJECTEDTOCOMPRESSIONINTHEDIRECTIONTHROUGHTHETHICKNESSFOLLOWEDBYSHEARINVARIOUSLATERALDIRECTIONS,INCLUDINGBRIDGELONGITUDINALANDTRANSVERSEDIRECTIONSCOMPUTATIONSARECARRIEDOUTUSINGTHEGENERALPURPOSE,FINITEELEMENTANALYSISCOMPUTERPROGRAM,ABAQUSCONCLUSIONSAREDRAWNREGARDINGTHEEFFECTSOFSHEARDIRECTIONONBEARINGBEHAVIORDOI101061/?ASCE?BE194355920000034CEDATABASESUBJECTHEADINGSBRIDGESELASTOMERSHEARCOMPRESSIONFINITEELEMENTMETHODAUTHORKEYWORDSBRIDGESELASTOMERICBEARINGSHEARCOMPRESSIONDIRECTIONFINITEELEMENTINTRODUCTIONINBRIDGES,MOVEMENTSANDROTATIONSOFGIRDERSMAYOCCURDUETOTEMPERATURECHANGES,MOVINGLOADS,EARTHQUAKES,CONCRETESHRINKAGE,ANDCREEPBEARINGSAREINTRODUCEDBETWEENTHEGIRDERSANDTHEPIERS?ORABUTMENTS?TOACCOMMODATETHESEMOVEMENTSINELASTOMERICBEARINGS?LONG1974?,MOVEMENTSANDROTATIONSAREACCOMMODATEDBYCOMPRESSINGORSHEARINGLAYERSOFTHERUBBERLIKEMATERIALS?ELASTOMERS?ELASTOMERSCANDEFORMVERYSUBSTANTIALLYWITHOUTDAMAGETHEYARETYPICALLYFLEXIBLEUNDERSHEARANDUNIAXIALSTRESSBUTTHEYAREVERYSTIFFAGAINSTVOLUMECHANGES?INCOMPRESSIBILITY?THISFEATUREMAKESTHEDESIGNOFANELASTOMERICBRIDGEBEARINGTHATISSTIFFINCOMPRESSIONBUTFLEXIBLEINSHEARPOSSIBLEIFTHEELASTOMERISLAMINATEDWITHSTEELSHIMS,ASSHOWNINFIG1,THELATERALEXPANSIONISPREVENTEDATTHEINTERFACESANDCOMPRESSIVEDEFORMATIONSMUSTBEACCOMMODATEDONLYBYBULGINGALLOWEDBETWEENSTEELSHIMSORBETWEENSTEELSHIMSANDTHEBRIDGEGIRDERORPIERARUBBERPAD?PLAINORLAMINATED?INCONTACTWITHTWORIGIDSURFACESISTHEMOSTCOMMONREPRESENTATIONOFANELASTOMERICBEARINGTHECONTACTCONDITIONSCANBEFIXEDFIXED?THERUBBERBLOCKISBONDEDTOTHETWORIGIDSURFACES?,FRICTIONFRICTION?THETOPANDBOTTOMSURFACESOFTHEBLOCKAREINFRICTIONALCONTACTWITHRIGIDPLATES?,ANDTHECOMBINATIONBETWEENTHETWO,FIXEDFRICTIONELASTOMERICBEARINGSCANBEANALYZEDUSINGAPPROXIMATEANALYTICALORNUMERICALTECHNIQUESEARLYRESEARCHBYGENT,LINDLEY,CONVERSY,MEINECKE,ANDHOLOWNIAEXPLOREDAPPROXIMATEANALYTICALSOLUTIONSFORRUBBERBLOCKS?GENTANDLINDLEY1959CONVERSY1967GENTANDMEINECKE1970HOLOWNIA1971?GENTANDLINDLEY?1959?SHOWEDTHATTHECOMPRESSIONMODULUSOFBONDEDRUBBERBLOCKSUNDERCOMPRESSIONISAFUNCTIONOFYOUNG’SMODULUSANDTHESHAPEFACTOR,DEFINEDASTHERATIOOFTHECROSSSECTIONALAREATOTHEFORCEFREEAREAINTHEDERIVATION,THERUBBERWASASSUMEDTOBEALINEARELASTICCOMPRESSIBLEMATERIALANDTHETOTALDISPLACEMENTSOFTHERUBBERAROSEFROMTHESUPERPOSITIONOFTWOSIMPLEDEFORMATIONSAPUREHOMOGENOUSDEFORMATIONOFTHEUNBONDEDBLOCKANDASUBSEQUENTLATERALDEFORMATIONNECESSARYTOBRINGTHEENDSECTIONSBACKTOTHEBONDEDCONDITIONGENTANDMEINECKE?1970?,BYASIMILARAPPROACH,ARRIVEDATANAPPROXIMATETHEORETICALTREATMENTOFBONDEDRUBBERBLOCKSSUBJECTEDTOLOWLEVELSOFCOMPRESSIONTHESOLUTIONWASEXTENDEDTOBENDINGANDSHEAROFRECTANGULARANDELLIPTICALCROSSSECTIONALRUBBERBLOCKSALSO,THESHEARSTRESSESATTHEBONDEDSURFACESUNDERCOMPRESSION,EXTENSION,ANDBENDINGWEREEVALUATEDLATER,STANTONANDROEDER?1982,1992?,ROEDERETAL?1987,1989?,ANDROEDERANDSTANTON?1991?REPORTEDRESULTSOFCOMBINEDANALYTICALANDEXPERIMENTALSTUDIESTHATLEDTOIMPROVEDDESIGNRECOMMENDATIONSHERRMANNETAL?1988A,B?CARRIEDOUTNONLINEARFINITEELEMENTANALYSISOFELASTOMERICBRIDGEBEARINGSBYMEANSOFAHOMOGENIZEDCONTINUUMMODELYEOHETAL?2002?EXTENDEDTHEINVESTIGATIONOFTWODIMENSIONALBONDEDRUBBERBLOCKPERFORMANCETOTHREEDIMENSIONSSEVERALSHAPESOFRUBBERBLOCKSWERECONSIDERED,INCLUDINGLONGSTRIP,CYLINDRICALDISK,RECTANGULARBLOCK,ANDANNULARBLOCKTHEUSUAL“INCOMPRESSIBILITY”ASSUMPTIONWASMODIFIEDTO“NEARINCOMPRESSIBILITY”TOWARDMOREACCURATESOLUTIONSMORERECENTLY,HORTONETAL?2002?STUDIEDAXIALLYLOADEDBONDEDRUBBERBLOCKSOFLONGTHINRECTANGULARANDCIRCULARCROSSSECTIONSTHEYDERIVEDCLOSEDFORMEXPRESSIONSFORTHETOTALAXIALDEFLECTIONANDSTRESSDISTRIBUTION,WHICHSATISFYEXACTLYTHEGOVERNINGEQUATIONSANDCONDITIONSBASEDUPONTHECLASSICALTHEORYOFELASTICITY,USINGASUPERPOSITIONAPPROACHFEWERSTUDIESHAVEEXAMINEDRUBBERBLOCKSINTHEFRICTIONFRICTIONCONDITIONITISREASONABLETOEXPECTTHATTHECOMPRESSIONMODULUSINTHEFRICTIONALCONTACTCONDITIONISLOWERTHANINTHEBONDEDCONDITION,ASSLIPOCCURSONCONTACTBETWEENTHERUBBERANDRIGIDSURFACESEFFECTIVELY,THECOMPRESSIONMODULUSISRELATEDTOTHEMAGNITUDEOF1GRADUATESTUDENT,DEPTOFCIVIL,ARCHITECTURAL,ANDENVIRONMENTALENGINEERING,UNIVOFTEXAS,AUSTIN,TX787122PROFESSOR,DEPTOFCIVIL,ARCHITECTURAL,ANDENVIRONMENTALENGINEERING,UNIVOFTEXAS,AUSTIN,TX78728?CORRESPONDINGAUTHOR?EMAILYANNISMAILUTEXASEDUNOTETHISMANUSCRIPTWASSUBMITTEDONSEPTEMBER12,2008APPROVEDONFEBRUARY24,2009PUBLISHEDONLINEONAPRIL13,2009DISCUSSIONPERIODOPENUNTILJUNE1,2010SEPARATEDISCUSSIONSMUSTBESUBMITTEDFORINDIVIDUALPAPERSTHISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL15,NO1,JANUARY1,2010?ASCE,ISSN10840702/2010/173–80/2500JOURNALOFBRIDGEENGINEERING?ASCE/JANUARY/FEBRUARY2010/73DOWNLOADED09MAR2012TO582015131REDISTRIBUTIONSUBJECTTOASCELICENSEORCOPYRIGHTVISITHTTP//WWWASCELIBRARYORGRUBBERBEHAVIORISREPRESENTEDBYACONSTITUTIVEMODELBASEDONTHETHEORYOFHYPERELASTICITYINABAQUSTHEORYMANUALVERSION66?2006?,THESTRAINENERGYDENSITYFUNCTIONPROPOSEDBYYEOH?1993?ISCHOSENTHISMODELWASUSEDINTHEEARLIERSTUDYBYHAMZEHETAL?1998?ASWELLTHEYEOHSTRAINENERGYDENSITYFUNCTIONISWRITTENINTERMSOFTHEFIRSTINVARIANT,I1,OFTHEGREENDEFORMATIONTENSORWC10?I1?3?C20?I1?3?2C30?I1?3?3?1?C10,C20,ANDC30BEINGMATERIALCONSTANTSTHEFOLLOWINGVALUESOFTHESECONSTANTSAREUSEDC10031384MPA?4551864PSI?C200021317MPA?309177PSI?C30000069279MPA?010048PSI??2?THESEVALUESAREOBTAINEDBYSCALINGAVAILABLETESTRESULTSFORACARBONBLACKFILLEDRUBBER?HAMZEHETAL1995?THESCALINGISSUCHTHATTHEMODELEXHIBITSASECANTMODULUSINSIMPLESHEAR,G,AT50STRAIN,EQUALTO06895MPA?100PSI?FIG4SHOWSAGRAPHOFTHESIMPLESHEARSTRESSSTRAINCURVEFORTHERUBBER,ASREPRESENTEDBYTHEYEOHMODELWITHTHEABOVEPARAMETERVALUESTHESTEELISASSUMEDTOBEANELASTOPLASTICMATERIALWITHYOUNG’SMODULUSOF200GPA?29?107PSI?,POISSON’SRATIOEQUALTO029,UNIAXIALYIELDSTRESSOF276MPA?40?104PSI?,ANDTANGENTMODULUSBEYONDINITIALYIELDINGOF1GPA?145?105PSI?THEFRICTIONALCONTACTBETWEENTHEPADANDTHERIGIDBLOCKSATTOPANDBOTTOMISTAKENINTOACCOUNTUSINGTHEPENALTYFORMULATIONAVAILABLEINABAQUSTHEORYMANUALVERSION66?2006?THISISAREGULARIZEDREPRESENTATIONOFCOULOMBFRICTIONWITHANALLOWABLE“ELASTICSLIP”FORRELATIVEDISPLACEMENTSSMALLERTHANTHEELASTICSLIP,ITISASSUMEDTHAT“STICKING”BEHAVIOROCCURSATTHEPADGIRDER,PADPIER,ORPADABUTMENTINTERFACESONTHEOTHERHAND,IFTHEELASTICSLIPISEXCEEDED,“SLIPPING”BEHAVIORISOBTAINEDATSHEARTRACTIONEQUALTOTHEFRICTIONCOEFFICIENT,?,MULTIPLIEDBYTHENORMAL?COMPRESSIVE?TRACTIONINTHEPRESENTSTUDY,WEHAVESETTHEELASTICSLIPAT000254MM?10?4IN?AND?030THESTEELREINFORCEDBEARINGISSUBJECTEDTOASEQUENCEOFTWOLOADSTEPSINSTEP1?FIG5?,THEPADISSUBJECTEDTOCOMPRESSIONINTHEDIRECTIONTHROUGHTHETHICKNESSWITHTHEAVERAGESTRESS,?AVG,SETAT?3,447KPA??AVG?500PSI?THISLEVELOFCOMPRESSIONISTHESAMEASTHEONECONSIDEREDBYHAMZEHETAL?1998?INTWODIMENSIONALCOMPUTATIONSINSTEP2?FIG6?,THEPADISSHEAREDINVARIOUSLATERALDIRECTIONSINTHEAMOUNTOFONEHALFOFTHETOTALRUBBERTHICKNESS??SHRT/222225MM0875IN?SEVENSHEARDIRECTIONSARECONSIDERED?FIG7?BRIDGELONGITUDINAL?PARALLELTOTHEZAXIS?,15,30,45,60,75°WITHRESPECTTOTHEZAXIS,ANDBRIDGETRANSVERSE?90°WITHRESPECTTOTHELONGITUDINALAXIS?FIG3?A?MESHUSEDINTHECOMPUTATIONS?SHOWNCOMPRESSEDRECTANGULARBEARING??B?COMPRESSEDRECTANGULARBEARING?CROSSSECTION?SHEAREDINTHELONGITUDINAL?“TRAFFIC”?DIRECTIONAND?C?COMPRESSEDRECTANGULARBEARING?CROSSSECTION?SHEAREDINTHETRANSVERSEDIRECTIONFIG4SIMPLESHEARSTRESSSTRAINCURVEFIG5STEP1COMPRESSIONFIG6STEP250SHEARJOURNALOFBRIDGEENGINEERING?ASCE/JANUARY/FEBRUARY2010/75DOWNLOADED09MAR2012TO582015131REDISTRIBUTIONSUBJECTTOASCELICENSEORCOPYRIGHTVISITHTTP//WWWASCELIBRARYORG
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 8
大?。?1.27(MB)
子文件數(shù):