

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、解析函數(shù)的局部動(dòng)力學(xué)性質(zhì)是復(fù)動(dòng)力系統(tǒng)的重要內(nèi)容之一.特別地,無(wú)理中性周期點(diǎn)的局部線(xiàn)性化是復(fù)動(dòng)力系統(tǒng)中比較困難的問(wèn)題之一.設(shè)P(z)=λz+a2z2+ a3z3+…+ adzd為次數(shù)大于等于2的多項(xiàng)式,其中λ=e2πiα,α∈(0,1)\Q.無(wú)理數(shù)α的性質(zhì)直接影響無(wú)理中性周期點(diǎn)是否可局部線(xiàn)性化.在過(guò)去幾十年中,數(shù)學(xué)家們陸續(xù)給出了幾個(gè)局部線(xiàn)性化的充分條件,其中Brjuno條件是現(xiàn)在最好的充分條件,并且在P是2次多項(xiàng)式時(shí),該條件還是必要的.D
2、ouady提出一個(gè)猜測(cè):α滿(mǎn)足Brjuno條件是有理函數(shù)在無(wú)理中性周期點(diǎn)局部可線(xiàn)性化的必要條件,這個(gè)猜想至今沒(méi)有得到驗(yàn)證.Perez-Marco指出對(duì)于結(jié)構(gòu)穩(wěn)定多項(xiàng)式,Douady的猜想是正確的.此外,Geryer指出對(duì)于一類(lèi)特殊的多項(xiàng)式族Pλ,d(z)=λz(1+z/d)d,Douady的猜想也是正確的.Perez-Marco和Geryer主要采用了擾動(dòng)多項(xiàng)式的二次項(xiàng)系數(shù),進(jìn)而構(gòu)造了存在Siegel盤(pán)的函數(shù)族,且該函數(shù)族中每個(gè)函數(shù)的S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 多項(xiàng)式系統(tǒng)的多參數(shù)擾動(dòng)分支.pdf
- 多項(xiàng)式除以多項(xiàng)式
- 幾類(lèi)多項(xiàng)式擾動(dòng)系統(tǒng)的極限環(huán)分支.pdf
- 多項(xiàng)式乘以多項(xiàng)式
- 具有對(duì)稱(chēng)單峰系數(shù)的多項(xiàng)式的研究.pdf
- 矩陣多項(xiàng)式的極小多項(xiàng)式算法.pdf
- Bernoulli多項(xiàng)式與冪和多項(xiàng)式.pdf
- 多項(xiàng)式乘多項(xiàng)式教學(xué)設(shè)計(jì)課件
- 關(guān)于多項(xiàng)式函數(shù)與置換多項(xiàng)式的研究.pdf
- 多項(xiàng)式乘多項(xiàng)式教案設(shè)計(jì)
- 多項(xiàng)式乘以多項(xiàng)式練習(xí)題
- 多項(xiàng)式乘多項(xiàng)式(優(yōu)質(zhì)課)
- 多項(xiàng)式乘多項(xiàng)式試題精選附答案
- c++多項(xiàng)式課程設(shè)計(jì)---多項(xiàng)式的運(yùn)算
- c++多項(xiàng)式課程設(shè)計(jì)---多項(xiàng)式的運(yùn)算
- 多項(xiàng)式乘多項(xiàng)式試題精選二附解答
- 有關(guān)廣義Fibonacci多項(xiàng)式與廣義Humbert多項(xiàng)式的研究.pdf
- 多項(xiàng)式乘多項(xiàng)式試題精選附答案55990
- 人教版多項(xiàng)式
- α-多項(xiàng)式的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論