高維復(fù)雜數(shù)據(jù)的有監(jiān)督特征提取方法.pdf_第1頁(yè)
已閱讀1頁(yè),還剩48頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、中國(guó)農(nóng)業(yè)大學(xué)碩士學(xué)位論文高維復(fù)雜數(shù)據(jù)的有監(jiān)督特征提取方法姓名:胡曉琴申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):應(yīng)用數(shù)學(xué)指導(dǎo)教師:經(jīng)玲20070601AbstractNowdaysthefastincreasingdimensfonMityofdatasetshasbroughttremendouscha上lengeindataprooe日ingeoitsurgenttodiscovertheintrinsicetructttt№ofthecomplexd

2、ata日et8withhighdimeusianalityDimensionalityreductionnimportantpreprocessing咖tocopewithhighdimensionsldatasets,hasattractedconsiderableattentionsinrecentyearsItsachallengingworktoextractinformationfromcomplexdatasets,whic

3、hhasimportanttheoreticalsignificanceandwideapplicationsinpatternrecogftition,Bioinfornntion,digitalimageprocessingand∞OnInthisdissertationthetheoriesandmethodsofdimensionalreductioninhighdimensional∞m—plexdatasetaarestud

4、iedfromclarificationandvisualizatioa也wpointsCorrespondingtodifferentca8民耽havedevelopedM”ceraln唧featureextractionmethodsbelowBasedOftclassificationprincipalweproposeAftewsupervisedfeatureextractioftalgorithmcalleddiscriim

5、natemultidimensionalmappingfDMM),whichisespechlIyeffectiveforsmallsampledatasetswithhighdimensionalityThealgorithmtakesadvantagesofclassicalMDSandLDAandmeanwhileavoidstheirdisadvantagesDMMhasmanyappealing觸tI刪:翱na】4凹compU

6、tatienalcomplexitynoparoJ口aetet8tobeselected,andhavingformalsolutionWegivetheoreticalanalysisofDMM,anddemonstratewithnumericalexperimentsthatDMMiseffectiveinpracticalriseIfthenumberofdataisverylarge,itisexpensiveforDMMin

7、practiceTosolvethisproblemwedescribeavariationOnDMM(LDMM),whichworkstractablywithverylargedatasets,andpreservestileattractivepropertiesofDMMThe∞lectionoflandmarkparameterisflexibleandmucht/loreefficientcomparingtoMDDThee

8、xperimentsremtltsshowthatLDMMcan舀wresultsapproximatetotheOiltputofDMMWeextendDMMfornonfinsormanifoldsanddevelopan哪nonlhasardimensionalityreductionmethodcalledgeodesicmetricdiscriminatemapping(GDM)GDMIM糟thegeodeBicdistanc

9、etoestimatetheintrinsicgeometryoftheIInderIyiD【grearold,ioUglynomfifteatdatasets∞D(zhuǎn)besuee自sfullyembeddedinthiswayIsomapalgorithmwasproposedforle_aroiftganonlineaxⅡlanifoIdandhadbeendemonstratedits8II代懶fmapplicationstomany

10、d如eetaHowever,wheumanifoldb錢(qián)姍凹disconnected,thebetweenregiongeodesicdiericeswillvarydrasticallyandIsomapcannotachievedesirableembeddingWedevelopamethodtocomputethebetweenregiongeodesicdistances,andthengeneralizeIsonmpforu

11、nconnectedmanifoldsExperimentalresultsOn目/ntheticandrealdataillustratetheefficiencyoftheproposedaigorithntGDMcan幽hegeneralizedforunconnectedmanifoldsasthe8aqleway∞Isomapkeywords:featureextractionmultidimensionalscaling1i

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論