概率論與數(shù)理統(tǒng)計茆詩松第二版課后第四章習題參考答案_第1頁
已閱讀1頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、1第四章第四章大數(shù)定律與中心極限定理大數(shù)定律與中心極限定理習題習題4.11如果XXPn→,且YXPn→試證:PX=Y=1證:因|X?Y|=|?(Xn?X)(Xn?Y)|≤|Xn?X||Xn?Y|,對任意的ε0,有??????≥???????≥?≤≥?≤2||2||||0εεεYXPXXPYXPnn,又因XXPn→,且YXPn→,有02||lim=??????≥?∞→εXXPnn,02||lim=??????≥?∞→εYXPnn,則P|X

2、?Y|≥ε=0,取k1=ε,有01||=??????≥?kYXP,即11||=??????0,有??????≥???????≥?≤≥?≤2||2|||)()(|0εεεYYPXXPYXYXPnnnn,又因XXPn→,YYPn→,有02||lim=??????≥?∞→εXXPnn,02||lim=??????≥?∞→εYYPnn,故0|)()(|lim=≥?∞→εYXYXPnnn,即YXYXPnn→;(2)因|XnYn?XY|=|(Xn?

3、X)YnX(Yn?Y)|≤|Xn?X|?|Yn||X|?|Yn?Y|,對任意的ε0,有??????≥????????≥??≤≥?≤2||||2||||||0εεεYYXPYXXPXYYXPnnnnn,對任意的h0,存在M10,使得4||1hMXP0,使得8||2hMYP0,當nN1時,81||hYYPn0,當nN2時,4)1(2||2hMXXPnmaxN1N2時,有3證:以連續(xù)隨機變量為例進行證明,設Xn?X的密度函數(shù)為p(y),必要性

4、:設XXPn→,對任意的ε0,都有0||lim=≥?∞→εXXPnn,對012εε,存在N0,當nN時,εεε?x時,有xn0,D(xn)=1,即1)(lim=∞→nxDn,則D(xn)的極限函數(shù)是常量函數(shù)f(x)=1,有f(?∞)=1≠0,故D(xn)的極限函數(shù)不是分布函數(shù);(2)若x≥0,有01nx,11=??????nxD,即11lim=??????∞→nxDn,若x時,有01nx,01=??????nxD,即01lim=????

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論