

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、不定積分解題方法總結?摘要:在微分學中,不定積分是定積分、二重積分等的基礎,學好不定積分十分重要。然而在學習過程中發(fā)現不定積分不像微分那樣直觀和“有章可循”。本文論述了筆者在學習過程中對不定積分解題方法的歸納和總結。關鍵詞:不定積分;總結;解題方法不定積分看似形式多樣,變幻莫測,但并不是毫無解題規(guī)律可言。本文所總結的是一般規(guī)律,并非所有相似題型都適用,具體情況仍需要具體分析。1.利用基本公式。(這就不多說了~)2.第一類換元法。(湊微分
2、)設f(μ)具有原函數F(μ)。則CxFxdxfdxxxf??????)]([)()]([)()]([?????其中可微。)(x?用湊微分法求解不定積分時,首先要認真觀察被積函數,尋找導數項內容,同時為下一步積分做準備。當實在看不清楚被積函數特點時,不妨從被積函數中拿出部分算式求導、嘗試,或許從中可以得到某種啟迪。如例1、例2:例1:????dxxxxx)1(ln)1ln(【解】)1(1111)ln)1(ln(????????xxxxx
3、xCxxxxdxxdxxxxx????????????????2)ln)1(ln(21)ln)1(ln()ln)1(ln()1(ln)1ln(例2:??dxxxx2)ln(ln1【解】xxxln1)ln(??Cxxxxxdxdxxxx????????ln1)ln(ln)1(ln1223.第二類換元法:設是單調、可導的函數,并且具有原函)(tx??)()]([.0)(ttft???又設?數,則有換元公式???dtttfdxf)()]([x
4、)(??cxdttdtttdttttdtttttxxxdx????????????????????????????????661212512621212arcsin6111611111111114.分部積分法.公式:??????????dd分部積分法采用迂回的技巧,規(guī)避難點,挑容易積分的部分先做,最終完成不定積分。具體選取時,通常基于以下兩點考慮:??、(1)降低多項式部分的系數(2)簡化被積函數的類型舉兩個例子吧~!例3:dxxxx?
5、??231arccos【解】觀察被積函數,選取變換則xtarccos??????????tdttdtttttdxxxx3323cos)sin(sincos1arccosCxxxxxCttttttdttttdtttttttttdtdtt???????????????????????????arccos1)2(313291cos91cos32sinsin31cos)1sin31(sinsin31)sinsin31(sinsin31)sins
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論