§復數項級數冪函數_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、26第四章第四章復變函數的級數復變函數的級數【P4361】(3學時)21級數的基本性質級數的基本性質【P4347】無窮級數:無窮級數:將無窮多個數相加,寫成的12........nuuu?12.........nuuu????形式,就稱為無窮級數無窮級數,記為。1kku???無窮級數的收斂性問題無窮級數的收斂性問題:無窮級數僅僅是一種形式上的相加。這種加法是不是具有“和數和數”呢?這個“和數和數”的確切意義是什么呢?收斂與發(fā)散收斂與發(fā)散

2、:定義無窮級數的前N項的和。如果當1kku???1NNkkSu???時趨向于一個固定的極限值S,就稱該無窮級數是收斂收斂,該極限N??NS值S就是該無窮級數的“和”無窮級數的“和”,即:11limlim]NkNkNNkkSuSu??????????????????。若當時的極限不存在,就稱無窮級數發(fā)散發(fā)散。N??NS1kku???(一)復數項級數(一)復數項級數本章我們主要學習復變函數項級數復變函數項級數的性質。在學習復變函數項級數之前

3、,先簡單介紹一下復數項級數復數項級數。1復數項級數復數項級數:如果無窮級數中的每一項均為121kkkzzzz??????????復數,該級數就稱為復數項級數。復數項級數。28(二)復變函數項級數(二)復變函數項級數復變函數項級數,即級數中的每一項均為復變量的復變函數,z。????????121kkkfzfzfzfz??????????1復變函數項級數的收斂性復變函數項級數的收斂性:(1)點收斂點收斂:若對某個區(qū)域內(或某根曲線上)的某一

4、點級數Dl0z是收斂的,就稱函數項級數在點在點收斂收斂。??01kkfz?????1kkfz???0z(2)域收斂域收斂:若對區(qū)域內(或曲線上)的所有點,(或Dl??1kkfz???zD?l)都是收斂的,則稱級數在區(qū)域在區(qū)域內(或曲線內(或曲線上)收斂上)收斂。??1kkfz???Dl(3)和函數和函數:若級數在區(qū)域內(或曲線上)收斂(域收斂域收斂),??1kkfz???Dl則級數是區(qū)域內(或曲線上)的一個函數,即對區(qū)域內(或??1kk

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論